Green Manufacturing Initiative

Assessment Follow-up and Solutions

Fabri-Kal

Assessment Follow-up and Solutions

Brian Wummel, Research Coordinator
Dr. Peter Parker, Professor

GMI Assessment Team
Nathan Christensen, Graduate Research Assistant
Gary Nola, Graduate Research Assistant
Andrew Gabriel, Undergraduate Research Assistant
Ana Perez, Undergraduate Research Assistant

Western Michigan University
College of Engineering and Applied Sciences
Manufacturing Research Center
Outline

- The GMI Assessment
 - PLA Landfill Waste
- IAC Assessment
- Oven Energy Solutions
 - Compare
 - Confirm
 - Savings
Assessments

- Fabri-Kal Site Assessment
 - Material Waste
 - Oven Heat Loss
 - Finite Element Analysis
 - Completed Aug. 5, 2011

- IAC Energy and Waste Survey Report
Quick Win

• Material Waste Audit
 – “Dumpster Dive”
• PLA represented 45% of landfill waste
• Solution: facilitate a Waste Exchange
• Results:
 – 300,000 pounds waste potentially diverted from landfill annually with re-sale value of $3,000
 – Monthly landfill costs reduced from $1,400 to $640

$12,000 / year
Assessments

Table of Contents

1. Introduction
2. Methodology
3. Data Collection and Analysis
4. Results and Discussion
5. Recommendations
6. Conclusions
7. Appendices

REPORT NUMBER UM0590

1. EXECUTIVE SUMMARY
 1.1 Energy Conservation
 1.2 General Recommendations
 1.3 Facility Descriptions
 1.4 Process Descriptions
 1.5 Status of Work in Process
 2.1 Case Studies
2.2 Best Practices Currently Implemented
2.3 Major Energy Conservation Opportunities
2.4 Case Studies
3. ENERGY AUDITING
 3.1 Facility Energy Summary
 3.2 Monthly Energy Usage
 3.3 Monthly Energy Costs
 3.4 Distribution of Energy Usage
 3.5 Distribution of Energy Costs
4.1 IMPLEMENTATION
 4.1.1 Implementation Strategies
 4.1.2 Implementation Plan
 4.1.3 Implementation Schedule
 4.1.4 Implementation Milestones
5.1 ASSESSMENT RECOMMENDATIONS
 5.1.1 Anticipated Energy Savings
 5.1.2 Anticipated Economic Benefits
 5.1.3 Anticipated Environmental Benefits
 5.1.4 Anticipated Social Benefits
 5.1.5 Anticipated Health Benefits
6.1 ADDITIONAL INFORMATION
 6.1.1 Additional Notes
 6.1.2 Additional Data
 6.1.3 Additional Figures
 6.1.4 Additional Tables

Table 1: Summary of Recommendations

Table 2: Summary of Audits

Table 3: Summary of Case Studies
• Reduce energy usage and heat loss
• Compare GMI and IAC oven data

<table>
<thead>
<tr>
<th></th>
<th>GMI 2011</th>
<th>IAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Lost</td>
<td>12,281 btu/hr</td>
<td>11,260 btu/hr</td>
</tr>
<tr>
<td>Potential Savings</td>
<td>$2931 per year</td>
<td>$2517 per year</td>
</tr>
<tr>
<td>Surface Temp.</td>
<td>150 °F</td>
<td>160 °F</td>
</tr>
<tr>
<td>Ambient Temp.</td>
<td>75 °F</td>
<td>85 °F</td>
</tr>
<tr>
<td>Surface Emissivity</td>
<td>0.12</td>
<td>0.9</td>
</tr>
<tr>
<td>Surface Area</td>
<td>89 ft²</td>
<td>80 ft²</td>
</tr>
<tr>
<td>Operating Hours</td>
<td>7300 per year</td>
<td>8760 per year</td>
</tr>
<tr>
<td>Price of Energy</td>
<td>0.12 $/kwh</td>
<td>0.054 $/kwh</td>
</tr>
</tbody>
</table>
• Collect measurements
• Investigate assumptions

<table>
<thead>
<tr>
<th></th>
<th>GMI 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Usage</td>
<td>31.1 kw/h</td>
</tr>
<tr>
<td>Oven Temp.</td>
<td>615° F</td>
</tr>
<tr>
<td>Surface Temp.</td>
<td>146° F</td>
</tr>
<tr>
<td>Surface Area</td>
<td>87.5 ft²</td>
</tr>
<tr>
<td>Operating Hours</td>
<td>6500 per year</td>
</tr>
<tr>
<td>Price of Energy</td>
<td>0.083 $/kwh</td>
</tr>
</tbody>
</table>
• Choice of material
 – R-value
• Physical restrictions

1” Melamine Lightweight Foam
(R-value = 4)
Costs

- 4 sheets melamine lightweight foam
- 8 braces
- 2 hours maintenance
To do

- Directly measure energy usage on oven
- Determine heat capacity of PLA
- Evaluate alternative insulations

Insulation

<table>
<thead>
<tr>
<th>Energy Savings</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” Melamine Insulation</td>
<td>2.78 kw/hr</td>
</tr>
</tbody>
</table>

$1536 / year
Minimizing Radiation/Atmospheric Losses

- Reduced height of opening from 7” to 2” with 12” thickness
- View factor reduced from 1.0 to 0.32
- 2.54 kW in energy savings

1403 / year

Proposed Oven
• Currently Implemented
 – $0 implementation costs
• Recommended
 – $562 implementation costs
 – 4 month ROI
• Total
 – Company wide (x36)
 $12,000 / year
 $1536 / year
 $1403 / year
 $15,000 / year
 $120,800 / year
Next Steps

• Energy Usage
 – direct meter reading

• PLA heat capacity
 – DSC lab equipment re-calibration

• Future Project
 – Finite Element Analysis of PLA sheet during molding