Energy Saving Improvements for Industrial Ovens

Oven Air Seal

Bill DeKam, Jim Martlew
Claudia Fajardo, Ph.D.
John Patten, Ph.D.
David Meade, Ph.D.
5/1/2012
Background

• Continuous oven uses
 – Curing
 – Drying
 – Annealing
 – Baking

• Energy sources
 – Natural gas
 – Electricity

Problem Description

- Hot air escapes through oven door openings due to buoyancy effects

- Cold air infiltrates oven interior lowering average temperature
Implemented Solution – Air Seal

- Modest improvements achieved with trial-and-error approach
- Need better understanding of the problem to optimize solution

Photo courtesy of Rapid-Line Manufacturing, taken using a FLIR ThermaCAM™
Goal and Objectives

• Goal:
 – Optimize implementation of air seals to reduce energy consumption in industrial ovens

• Objectives
 – Develop an analytical approach to predict oven performance
 • Computational tools
 – Validate the proposed model with field data
 • Experimental results
 – Evaluate changes to oven configuration
 • Minimize energy use and cost of implementation
 • Increased production via higher throughput
Benchmarking

• Focus areas
 – Ovens
 • Types, operation, heat loss mechanisms and solutions
 – Theory of turbulent buoyant jets
 – Experimental measurement techniques

• Methodology
 – Literature reviews
 – Site visits
Baseline Measurements

- Energy consumption
 - Invasive Natural gas meter well suited to low line pressure conditions
 - Provides quantitative measurement of energy use
Model Simulations

- Model capable of reproducing physical trends
 - Buoyancy and non-uniform temperature distribution
 - Energy loss out door opening
- Model requires experimental validation to ensure accuracy

Modeled Temperature Profile
Experimental Validation
Profile Temperature Measurement

- Multi-point thermocouple test
 - Requires specialized data acquisition tools
 - Setup built for 6” spatial resolution
Experimental Validation
Temperature Profile Results

Air Seals OFF

Air Seals ON
Experimental Validation
Profile Comparison, Air Seals OFF

Experimental data
Model results
Conclusions

• Designed and built test setup for accurate measurement of oven temperatures

• Quantified effects of current air seal solution:
 – Raised temperatures in lower regions of exit by as much as 20°F
 – Decreased peak temperatures in upper region of exit by around 10°F
 – Reduced temperature gradient across lower 75% of oven exit

• Present model requires refinement

• Boundary condition assumptions must be studied and reevaluated to improve accuracy
Future Work
Investigation of Boundary Conditions

• Hot air nozzle velocity and turbulence
 – Affects heat diffusion throughout oven
 – Difficult to measure directly

• Particle image velocimetry (PIV)
 – Utilizes high speed photography to gather images of illuminated particles entrained in flow
 – Statistical analysis of particle positions between images provides local fluid velocity vectors

• Laboratory model
 – Build a physical model representative of actual oven nozzle to side step difficulty of direct measurement issue
Acknowledgements

We would like to thank:

• Dr. Patten and Dr. Meade and the Green Manufacturing Initiative for project funding and continued support

• The industrial mentor Mark Lindquist and project advisor Dr. Claudia Fajardo

• The Office of the Vice President of Research for granting us the Undergraduate Research Excellence Award
Future Work

Investigation of Boundary Conditions

Example of PIV test setup for determining field flow characteristics

Image courtesy of www.dlr.de
Experimental Validation

End-to-End Temperature Measurement

- Lengthwise temperature through oven
 - Datapak DAQ system – provides temperature vs. time measurements
 - Experimental data compared with simulation results

Temperature probe orientation; attached to product conveyor system
Energy Consumption Measurement

• Natural Gas Metering
 – Provides quantitative results of energy use

• Methods
 – Non-invasive
 • Convenient and portable
 • Low gas pressure limits use
 – Invasive
 • Single station use
 • Suited for current application

Photos courtesy of sierrainstruments.com and omega.com