ACKNOWLEDGMENTS

This work would not have been possible without the advice and support of many people. First, and foremost, I would like to thank my advisor Dr. John Patten for providing me the opportunity and guidance throughout this project. Great thanks go to Dr. Philip Guichelaar for his immense support and providing space in his laboratory to set up my experiments, and also training me to use the white light interference microscope. I would like to thank Dr. Pnina Ari-Gur for training me to use the scanning electron microscope. I would like to acknowledge the collaborative work with the High Temperature Materials Laboratory (HTML) located at Oak Ridge National Laboratory. Many thanks go to Dr. Peter Blau for providing me with the opportunity to work at HTML. Many thanks to Jason Braden and Dr. Jane Howe for helping me with my experiments at HTML. Special thanks to Dr. Rob Eversole for his support in imaging some of my tools. Special thanks go to Dr. Muralidhar Ghantasala, Dr.Philip Guichelaar and Dr.Pnina Ari-Gur, for serving on my thesis committee and providing advice and review of the thesis. Great thanks to Jerry Jacob, Roshan Joseph and Ramesh Chandra for working with me on various experiments in this study. I would also like to thank the Department of Mechanical Engineering at the Western Michigan University for giving me the opportunity to study in their graduate program.
Finally, I would like to express my acknowledgements to Third Wave Systems and the National Science Foundation for having funded this work.

Biswarup Bhattacharya
TABLE OF CONTENTS

ACKNOWLEDGEMENTS..ii
LIST OF TABLES...ix
LIST OF FIGURES...x

1. INTRODUCTION..1
 1.1. Silicon Carbide..2
 1.2. Polycrystalline Silicon Carbide..4
 1.3. CVD Coated Silicon Carbide..5
 1.4. Conventional Manufacturing...6
 1.5. Precision Machining..7
 1.6. Project Goals...8

2. BACKGROUND OF RESEARCH..10
 2.1. Origin of Ductility...10
 2.2. Phase Transformation...12
 2.3. Material Removal /Chip Formation..13
 2.4. Surface Characteristics..16
 2.5. Effect of Rake Angle and Cutting Edge Radius of the Tool...17
 2.6. Tool Wear...18
 2.7. Machining Forces..20

iv
Table of Contents — Continued

3. DUCTILE REGIME NANO-MACHINING OF POLYCRYSTALLINE SILICON CARBIDE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Introduction</td>
<td>22</td>
</tr>
<tr>
<td>3.2. Experimental Setup for Machining of Polycrystalline SiC</td>
<td>23</td>
</tr>
<tr>
<td>3.3. Results</td>
<td>24</td>
</tr>
<tr>
<td>3.3.1. Force Plots of Cutting and Thrust Forces for Different Cutting Tools</td>
<td>24</td>
</tr>
<tr>
<td>3.3.2. Surface Roughness</td>
<td>27</td>
</tr>
<tr>
<td>3.3.3. Tool Wear</td>
<td>29</td>
</tr>
<tr>
<td>3.3.4. Post Experimental Analysis</td>
<td>30</td>
</tr>
<tr>
<td>3.4. Discussion</td>
<td>32</td>
</tr>
<tr>
<td>3.4.1. Forces and Coefficient of Friction</td>
<td>32</td>
</tr>
<tr>
<td>3.4.2. Thermal Effects</td>
<td>33</td>
</tr>
<tr>
<td>3.5. Conclusion</td>
<td>33</td>
</tr>
</tbody>
</table>

4. DETERMINATION OF DUCTILE TO BRITTLE TRANSITION DEPTH (DBT) FOR CVD COATED SILICON CARBIDE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction</td>
<td>35</td>
</tr>
<tr>
<td>4.2. Pre-experimentation Process</td>
<td>36</td>
</tr>
<tr>
<td>4.3. Scratching using a 5µm Diamond Stylus Tip</td>
<td>37</td>
</tr>
<tr>
<td>4.4. Results from Scratching with 5µm Diamond Stylus</td>
<td>37</td>
</tr>
<tr>
<td>4.4.1. Coors Tek Sample</td>
<td>37</td>
</tr>
<tr>
<td>4.4.2. Poco Graphite Sample</td>
<td>38</td>
</tr>
</tbody>
</table>
Table of Contents — Continued

CHAPTER

4.5. Inclined Plate Experiment ...40
4.6. Results from Inclined Plate Experiment ...42
4.7. Scratching of using a 12.5 µm Diamond Stylus ...43
 4.7.1. Coors Tek Sample ...43
 4.7.2. Poco Graphite Sample ..44
4.8. Results from Scratching using 12.5 µm Diamond Stylus44
 4.8.1. Coors Tek Sample ...44
 4.8.2. Poco Graphite Sample ..47
4.9. Coefficient of Friction ..51
4.10. Tool Degradation ...52
4.11. Discussion ..54
4.12. Conclusion ..54

5. SINGLE POINT DIAMOND TURNING (SPDT) OF CHEMICALLY VAPOR DEPOSITED (CVD) COATED SILICON CARBIDE (SiC)

5.1. Introduction ..55
5.2. Polishing of CVD SiC ...56
5.3 Machining Parameters ...56
5.4. Experimental Setup for SPDT of CVD SiC ...57
5.5. Results ...58
Table of Contents — Continued

CHAPTER

5.5.1. Machining Time...58
5.5.2. Surface Roughness...58
5.5.3. Tool Wear... 61
5.5.4. Depth of Cut...61
5.5.5. Feed/ Rev...63
5.5.6. Material Removal...63
5.6. Discussion..64
5.7. Conclusion...64
5.8. Ongoing Work on SPDT of CVD SiC.................................64

6. DETERMINATION OF A DUCTILE RESPONSE AND A66
DUCTILE TO BRITTLE TRANSITION DEPTH OF QUARTZ (Infrasil 302)

6.1. Introduction..66
6.2. Scratching of Quartz with 5 µm Diamond Stylus67
6.3. Inclined Plate Experiment..68
 6.3.1. Experimental Setup for Inclined Plate Experiment69
 6.3.2. Results from Inclined Plate Experiment......................70
6.4. Discussion...72
6.5. Conclusion...72
Table of Contents — Continued

7. CONCLUSION..73

7.1. Concluding Remarks...73

7.1.1. Polycrystalline SiC..73

7.1.2. CVD SiC..73

7.1.3. Quartz..74

7.2. Future Developments..74

7.2.1. Polycrystalline SiC..74

7.2.2. CVD SiC..74

7.2.3. Quartz..75

REFERENCES..76

APPENDICES..79

A. Material Properties of Polycrystalline SiC, CVD SiC and Quartz..................79

B. Ductile to Brittle Transition Depth Calculations...80

C. Calculations for Required Load for SPDT of SiC..81

D. Calculations for Volume of Material Removal after SPDT of CVD SiC.........83

E. Calculation for Validation of Scratching Experiments.................................85

F. Diamond Cutting Tool Design used for Different Experiments....................86
LIST OF TABLES

4.1. Surface roughness details of CVD coated SiC samples..36
5.1. Comparison of programmed and achieved depth of cuts..61
6.1. Summary of experiments performed to determine DBT in quartz72
LIST OF FIGURES

1.1: Flow chart for production of polycrystalline SiC by firing of consolidated powders...4

2.1: Chip profile geometry for single point machining using a round nose cutting tool ..14

2.2: Stress Field generated in a chip ..14

2.3: Model of micro-fracture damage transitions in ductile regime machining15

2.4: Schematic model showing wear of the tool ...18

2.5: Flank wear vs machining time ..19

2.6: Schematic of orthogonal cutting model showing the direction of forces20

3.1: Experimental setup for machining of polycrystalline SiC ..23

3.2: CAD drawing showing the specifications of the SiC tube23

3.3: Comparison of forces for different depths of cut (Chardon tool)25

3.4: Comparison of force ratio for 10 and 25 nm depth of cuts25

3.5: Comparison chart for forces achieved from Chardon and Edge tools at 10nm depth of cuts ..26

3.6: Force ratio for Chardon and Edge tool at 10 nm depths of cut26

3.7: Surface profiles for the SiC tube after machining ...27

3.8: Surface roughness plot for 10 nm depth of cut showing the best surface roughness achieved ..28

3.9: Surface roughness plot for 25 nm depth of cut showing the best surface roughness achieved ..28
List of Figures — Continued

3.10: Optical microscope image of tool wear, the tool is at 45 deg to the microscope’s lens, looking perpendicular to the rake face ...29

3.11: Schematic representation of tool wear ...30

3.12: Image of diffraction pattern showing the halo ring for amorphous nature of the material ..31

3.13: TEM image of a ductile chip from machining SiC ..31

3.14: TEM EDS analysis of the ductile chip ..32

4.1: Wyko image of completely ductile scratch for Coors Tek sample using 5µm diamond stylus ..38

4.2: Force plot for the scratch made on Coors Tek material using 5µm diamond stylus ..38

4.3: Wyko image showing DBT depth behind the tool for Poco Graphite sample using 5µm diamond stylus ...39

4.4: Force and acoustic emission (AE) data for Poco Graphite sample ...40

4.5: Experimental setup for inclined plate experiment ...41

4.6: Schematic representation of the inclined plane experiment geometry ...42

4.7: Wyko image of the DBT depth for Poco Graphite material using flat nose diamond tool ...43

4.8: Force plot for center of scratch showing DBT for Poco Graphite material using a flat nose diamond tool ...43

4.9: Wyko image showing the initial part of scratch for Coors Tek sample using 12.5µm stylus ..45

4.10: Force and acoustic emission (AE) plot for initial part of the scratch for Coors Tek sample using 12.5µm stylus ..45
List of Figures — Continued

4.11: Wyko image of the DBT depth for Coors Tek sample using 12.5µm stylus ...46

4.12: Force profile for DBT depth of Coors Tek sample using 12.5µm stylus46

4.13: Wyko image showing the brittle fracture region after DBT depth for Coors Tek sample using 12.5µm stylus47

4.14: Wyko image of the starting portion of the scratch on Poco Graphite sample using 12.5µm diamond stylus.................................48

4.15: Force and AE plot for starting portion of the scratch on Poco Graphite sample using 12.5 µm diamond stylus.................................48

4.16: Wyko image of DBT depth for Poco Graphite sample scratched using 12.5µm diamond stylus ..49

4.17: Force and AE plot of DBT depth for Poco Graphite sample using 12.5 µm diamond stylus..49

4.18: Wyko image showing the brittle fracture after the DBT region on Poco Graphite sample using 12.5 µm diamond stylus......................50

4.19: Optical image showing ductile to brittle transition of the Poco Graphite sample using 12.5 µm diamond stylus..............................50

4.20: Apparent Coefficient of friction for Poco Graphite sample polished at less than 100 nm (Ra) from scratching experiment using 5µm stylus......................51

4.21: Apparent Coefficient of friction for Coors Tek sample polished at less than 10 nm (Ra) from scratching experiment using 12.5µm stylus......................51

4.22: SEM image of a 5µm worn/broken diamond stylus tip...53

4.23: SEM image of the tool edge corner from flat nose tool used for inclined plane experiment of Poco Graphite sample53

4.24: SEM image of a 12.5 µm tip radius diamond stylus...53
List of Figures — Continued

5.1: Experimental setup for SPDT of CVD SiC ...57

5.2: Picture showing the optical quality of the surface finish
on the machined CVD SiC sample ..59

5.3: CAD model showing the surface roughness
distribution for 6 inch CVD SiC plate ...59

5.4: Optical images comparing CAD drawing ..60

5.5: Wyko images comparing the surfaces before and after machining60

5.6: Optical microscope image of tool edge after machining ..61

5.7: Comparison of depth and surface roughness data ...62

5.8: Optical image of the machined surface showing the
actual feed/rev for region 1 ..63

5.9: Schematic showing a sectional view of the 6 inch
plate comparing the step size for depth of cuts ..63

5.10: Chart showing the surface roughness achieved for different samples
after each pass of machining ...65

6.1: Picture showing the Quartz (Infrasil 302) used for scratches66

6.2: Wyko image for the scratch showing the DBT
depth of Infrasil 302 using 5µm stylus ...68

6.3: Force plot for the scratch showing the DBT
depth of Infrasil 302 using 5µm stylus ...68

6.4: Wyko image showing the brittle fracture zone after the DBT
depth of Infrasil 302 using 5µm stylus ...69

6.5: Schematic representation of the experimental setup
for inclined plate experiment ...70
List of Figures — Continued

6.6: Wyko image showing DBT depth for scratch on Infrasil 302 from inclined plate experiment ..70

6.7: Force plot for DBT depth of scratch on Infrasil 302 from inclined plate experiment ..71

6.8: Wyko image showing the brittle region of the scratch on Infrasil 302 from inclined plate experiment ..71