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ARTICLE

INTRODUCTION
A new era of science education has been heralded by calls for change in science teach-
ing and learning at the postsecondary level. University staff and faculty are engaged 
in continuing initiatives to cultivate public scientific literacy (e.g., Rutherford and 
Ahlgren, 1990), enhance workforce readiness (e.g., Carnevale et al., 2011), and 
increase the competitiveness of the United States in the global economy (e.g., 
President’s Council of Advisors on Science and Technology, 2012). A central action of 
many change initiatives has been to encourage postsecondary instructors to adopt 
pedagogical approaches based in research on how people learn (National Research 
Council, 2000; American Association for the Advancement of Science [AAAS], 2011). 
As these initiatives are planned, enacted, and evaluated, it is paramount to have reli-
able and valid methods to measure initial and continuing conditions (AAAS, 2013). 
The goal of this study was to address this need by designing and validating a survey, 
the Postsecondary Instructional Practices Survey (PIPS), to measure the instructional 
practices of postsecondary instructors.

LITERATURE REVIEW
There are many potential methods to measure instructional practices. These include 
faculty surveys, student surveys, interviews, class observations, and portfolio/artifact 
analysis (AAAS, 2013). We see faculty self-report as a particularly useful method, as 
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ABSTRACT
Researchers, administrators, and policy makers need valid and reliable information about 
teaching practices. The Postsecondary Instructional Practices Survey (PIPS) is designed to 
measure the instructional practices of postsecondary instructors from any discipline. The 
PIPS has 24 instructional practice statements and nine demographic questions. Users cal-
culate PIPS scores by an intuitive proportion-based scoring convention. Factor analyses 
from 72 departments at four institutions (N = 891) support a 2- or 5-factor solution for 
the PIPS; both models include all 24 instructional practice items and have good model 
fit statistics. Factors in the 2-factor model include (a) instructor-centered practices, nine 
items; and (b) student-centered practices, 13 items. Factors in the 5-factor model include 
(a) student–student interactions, six items; (b) content delivery, four items; (c) formative 
assessment, five items; (d) student-content engagement, five items; and (e) summative as-
sessment, four items. In this article, we describe our development and validation processes, 
provide scoring conventions and outputs for results, and describe wider applications of the 
instrument.
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surveys are easy to administer and can get at instructional prac-
tices that are difficult to observe. For example, compared with 
self-report surveys, peer and protocol-based observations can 
be expensive and difficult to implement at scale.

One concern about surveys is that instructors may inaccu-
rately self-report their teaching practices. There has been lim-
ited study of this issue, and the results are currently inconclu-
sive. One study found that, compared with the ratings of trained 
observers, instructors completing self-report surveys overesti-
mate the amount of student interactivity in their classrooms 
(Ebert-May et al., 2011). However, in a study with better align-
ment of survey items and observation codes, observational data 
support and align with self-report from instructors (Smith et al., 
2014). This second study suggests that there are aspects of 
instruction that instructors can accurately self-report. We expect 
good alignment of the PIPS with common observation proto-
cols, as our conceptual framework was developed from a critical 
analysis of the literature (Walter et al., 2015) and drew from 
observation codes of the Teaching Dimensions Observational 
Protocol (TDOP; Hora et al., 2012) and the Reformed Teaching 
Observation Protocol (RTOP; Piburn et al., 2000). Initial data 
from our case studies indicate that PIPS self-report data signifi-
cantly correlate with several TDOP codes (Walter et al., 2016).

When we first began exploring the idea of building our own 
instrument, we considered existing surveys of instructional 
practice. Over the past decade, the literature has blossomed 
with instruments of this nature, including 10 surveys summa-
rized in AAAS (2013) and the Teaching Practice Inventory (TPI) 
by Wieman and Gilbert (2014). Willliams et al. (2015) exam-
ined the nature these surveys in a detailed item- and instru-
ment-level analysis. We note that although there are 11 pub-
lished surveys of instructional practices, none is designed to 
elicit teaching practices (and only teaching practices) from an 
interdisciplinary group of postsecondary instructors.

Most available instruments are designed to survey faculty 
from a specific discipline, and therefore may contain disci-
pline-specific jargon. Unless these surveys are revalidated for 
new populations, they should only be used for their intended 
populations to preserve face validity (DeLamater et al., 2014). 
Discipline-specific surveys include those designed for chemis-
try and biology faculty (Marbach-Ad et al., 2012), engineering 
faculty (Brawner et al., 2002; Borrego et al., 2013), geoscience 
faculty (MacDonald et al., 2005), physics faculty (Dancy and 
Henderson, 2010), statistics faculty (Zieffler et al., 2012), and 
math and science faculty (TPI; Wieman and Gilbert, 2014).

The remaining four surveys of instructional practices are 
interdisciplinary and can also find differences among the teach-
ing practices of instructors from different disciplines. For exam-
ple, the 2011–2012 Higher Education Research Institute (HERI) 
faculty survey indicated that 62% of faculty members in sci-
ence, technology, engineering, and mathematics (STEM) use 
“extensive lecturing” in all or most of the courses they teach, 
compared with 36% in all other fields (Hurtado et al., 2011). 
One potential disadvantage to using large-scale nationwide sur-
veys is that they elicit a wide range of elements about teaching 
and the academic workplace. Only a fraction of the items on 
these instruments elicit actual teaching practices. The 
Approaches to Teaching Inventory (ATI), for example, has 
some items about teaching but also items about the instructor’s 
beliefs about and goals for teaching (Trigwell and Prosser, 

2004). Other instruments elicit a variety of academic workplace 
features, such as faculty perceptions of institutional climate and 
relationships with campus staff. These surveys include the 
Faculty Survey of Student Engagement (FSSE; Center for 
Post-secondary Research at Indiana University, 2012), HERI 
(Hurtado et al., 2011), and the National Study of Postsecondary 
Faculty (NSOPF; National Center for Educational Statistics 
[NCES], 2004). Two of these are available on a proprietary 
(HERI) or permission-only (FSSE) basis.

Finally, we note that many existing instruments (discipline 
specific and interdisciplinary) use inconsistent item scales, com-
plicated scoring conventions, and potentially bias-generating 
educational jargon (e.g., “inquiry,” “problem-based learning,” 
and “authentic research practices”; Walter et al., 2016). Several 
are also lengthy. For example, the FSSE has 130 items (Center 
for Post-secondary Research at Indiana University, 2012) and 
the NSOPF has 83 items and takes 30 minutes to complete 
(NCES, 2004).

On the basis of our analysis of the current state of instruments 
for measuring teaching practices, we decided that there was a 
need for a new instrument that met the following design criteria: 
1) applicable across all undergraduate disciplines, 2) succinct 
and easy to administer, 3) uses an intuitive scoring convention, 
and 4) available to any user on a nonproprietary basis. With 
these principles in mind, we began to design the PIPS.

METHODOLOGY
Our goal was to design an interdisciplinary, succinct, and psy-
chometrically sound survey of postsecondary instructional 
practices. In this paper, we describe the development of the 
PIPS and explore the following two research questions:

RQ1. Do PIPS items group together into valid, reliable, and 
measurable variables?
RQ2. What are some of the emergent patterns in the PIPS 
data among the four surveyed institutions and 72 surveyed 
departments?

Conceptual Framework
We drew from the empirical and theoretical literature as we 
developed the PIPS. There is an extensive literature base that 
describes research on instructional practices (e.g., Pascarella 
and Terenzini, 1991, 2005) but no standard conceptual model. 
We therefore shaped our items and conceptual categories by 
finding themes in the 1) research on instructional practice, 
2) teaching observation protocols, and 3) existing self-report 
teaching practice surveys.

We compiled 153 items by combining applicable items and 
concepts from the four interdisciplinary instructional practice 
surveys (ATI, FSSE, HERI, NSOPF) and two observational pro-
tocols (RTOP, TDOP). These items and codes were triangulated 
by themes in four comprehensive literature reviews (Pascarella 
and Terenzini, 1991, 2005; Iverson, 2011; Meltzer and 
Thornton, 2012). We reduced and revised an initial set of 153 
items by removing redundant items, items that did not refer to 
actual teaching practices (i.e., beliefs about teaching or intent to 
teach in a given manner), and checklists of generalized practices 
(e.g., “lecture,” “lecture with demonstration,” “multiple-choice 
tests”). We excluded instructional technology items (e.g., digital 
tablets, pointers), as we consider most instructional practices to 
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be transcendent of technology; that is, the practices on the PIPS 
can be implemented with or without the use of technology.

As we reduced and revised the initial set of items, we orga-
nized them into four conceptual categories: instructor–student 
interactions, student–content interactions, student–student 
interactions, and assessment. These are not the only categories 
by which one could sort the items, but we found conceptual 
categories helpful in understanding the nature of available 
instructional practice survey questions and used the categories 
to generate our own items.

Item Generation
Using the four conceptual categories as a guiding framework, 
we went through multiple rounds of item generation (43 new 
items) and revision or removal of the original 153 items. The 
final version of the PIPS has 24 instructional practice items 
(13 new, 11 revised). It was our goal to generate a broad range 
of instructional practices not an inventory of all possible instruc-
tional practices. It was also not our goal to have an equal num-
ber of items in each conceptual category.

The research team and four education researchers from an 
outside institution revised the items for clarity and to reduce the 
potential for eliciting socially acceptable responses. For exam-
ple, item P05, originally from the ATI (Trigwell and Prosser, 
2004), was revised to remove unnecessary words: “I design my 
course with the assumption that most students have very little 
useful knowledge of the topics to be covered.” We found other 
items needed to be carefully worded when they described more 
traditional, transmission-based teaching approaches. We there-
fore set the tone of the PIPS by starting the survey with a state-
ment that describes such an approach. We do not downplay this 
approach as “just lecture” but rather “I guide students through 
major topics as they listen and take notes” (item P01). Item P03 
is similarly nonevaluative: “My syllabus contains the specific 
topics that will be covered in every class session.”

Items were also eliminated or revised during our field-test-
ing stage if they elicited more than one teaching practice (i.e., 
items could not be double-barreled; Clark and Watson, 1995; 
Podsakoff et al., 2012). For example, Iverson (2011) describes 
groups formed by students, the teacher, or the researcher as a 
common social learning approach. As a statement on a survey, 
this concept would be double-barreled. Instead, we chose to 
write the item for this concept based on RTOP code 18 (Piburn 
et al., 2000): “I structure class so that students regularly talk 

with one another about course concepts.” This text became 
PIPS item P12.

Intended Population and Context
Any postsecondary instructor from any discipline can be sur-
veyed with the PIPS, including full- and part-time instructors, 
graduate students, and instructional staff. For the data reported 
herein, we asked participants to reference teaching the larg-
est-enrollment, lowest-level course they have taught in the last 
2 yr. We believe this setting is one of the most challenging in 
which to use research-based instructional strategies in compar-
ison with smaller-enrollment, higher-level courses. This setting 
is also of primary concern to researchers, funding agencies, and 
policy makers interested in instructional change (e.g., AAAS, 
2013).

Scale
The PIPS requires respondents to rate instructional practice 
statements on a scale of descriptiveness. We selected a five-point 
Likert-style scale to produce maximum variance with minimum 
response overlap (Bass et al., 1974). There is no neutral point 
on the scale, as removing a neutral option from the scale 
generates better variability (Bishop, 1987; Johns, 2005). 
Response options include

Not at all descriptive of my teaching (0)
Minimally descriptive of my teaching (1)
Somewhat descriptive of my teaching (2)
Mostly descriptive of my teaching (3)
Very descriptive of my teaching (4)

Data Sources
We surveyed a convenience sample of 891 postsecondary 
instructors from four institutions of higher education in the 
United States (Table 1). The survey was administered online 
using Qualtrics, and the overall response rate was 35.7% 
(891/2494). Our research team administered the survey at Insti-
tutions A and C, and researchers at other institutions adminis-
tered the survey (with our guidance) at Institutions C and D.

Analyses
We ran factor analyses to examine which items consistently 
loaded together, following Hu and Bentler’s (1995) recommen-
dations for evaluating model fit. We first ran exploratory factor 

TABLE 1. Demographic and sample size information for the surveyed institutions (N = 891)

Institution A Institution B Institution C Institution D

N 216 164 87 424
Departments surveyed 19 9 10 40
Response rate 37.1% 64.1% 27.7% 28.0%
Disciplines STEM and applied sciences STEM Biological sciences All departments
Instructors surveyed Full- and part- time faculty; 

graduate students
Full- and part-time faculty Full-time faculty only Full- and part-time faculty; 

graduate students
U.S. region Midwest East Southeast Mountain West
Control Public Public Public Public
Carnegie classification Research university 

High research activity
Research university 

Very high research activity
Research university 

Very high research activity
Master’s college or university 

(larger program)
Student population 25,000 28,000 34,000 22,000
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analyses (EFAs) to identify dimensions of teaching practice 
using maximum-likelihood extraction with both promax rota-
tions. We selected a maximum-likelihood extraction, because it 
allows for the shared variance from the model each time a fac-
tor is created, while allowing the unique variance and error 
variance to remain in the model. We selected a promax rotation 
method, because we expected some of the factors to be oblique 
(correlated) and because oblique rotations often yield identical 
or superior results to orthogonal rotations (Osborne, 2015).

Competing models (e.g., a four-dimensional vs. five-dimen-
sional model) were compared using the likelihood ratio test 
under the null hypothesis that a more complex model does not 
significantly improve fit with the data at p < 0.05.

We also completed confirmatory factor analyses (CFAs) to 
evaluate our a priori categorization of the items. We evaluated 
goodness of fit of hypothesized models by using the root-mean-
square error of approximation (RMSEA; Steiger, 2000), chi-
squared/df below 5.0 (Bollen, 1989), and a comparative fit 
index (CFI) near 0.90 (Hu and Bentler, 1999; Byrne, 2013). 
Guidelines for acceptable model fit statistics values vary. Hu 
and Bentler (1995) suggest an RMSEA of 0.06 as indicative of 
a good-fitting model. MacCallum et al. (1996) suggest values of 
0.01, 0.05, and 0.08 as indicative of excellent, good, and medi-
ocre fit, respectively.

We also ran analysis of variance (ANOVA), independent 
t tests, and correlational analyses to examine differences in 
groups of interest to see whether PIPS could identify group dif-
ferences in instructional practices and whether those differ-
ences were similar to other claims in the literature.

RESULTS
RQ1. Do PIPS Items Group Together into Valid, Reliable, 
and Measurable Variables?
Validity is the extent that an instrument measures what it was 
intended it to measure (Haynes et al., 1995). Three commonly 
reported types of validity are content, face, and construct valid-
ity. Content validity documents how well an instrument rep-
resents aspects of the subject of interest (e.g., teaching prac-
tices). A panel of subject matter experts is often used to improve 
content validity through refinement or elimination of items 
(Anastasi and Urbina, 1997). An instrument has face validity if, 
from the perspective of participants, it appears to have rele-
vance and measure its intended subject (Anastasi and Urbina, 
1997). Construct validity refers to the degree an instrument is 
consistent with theory (Coons et al., 2000); this is often achieved 
through CFA and/or EFA (Thompson and Daniel, 1996).

Content and Face Validity. To achieve both content and face 
validity, we field-tested the PIPS in its entirety with a sample 
of nonparticipating instructors (N = 5) and a panel of educa-
tion researchers at another institution (N = 4). This process 
allowed for items to be revised for clarity, accuracy of content, 
and relevancy.

Construct Validity. The PIPS produces both two-factor (2F) 
and five-factor (5F) solutions that are consistent with theory on 
how people learn (e.g., National Research Council, 2000) and 
the nature of assessment practice (Angelo and Cross, 1993); 
we detail these solutions in the Factor Analyses subsection of 
the results for RQ2.

Reliability. The PIPS has an overall instrument reliability of 
α = 0.800. This value could not be substantially improved with 
removal of any of the 24 items. We include respective con-
struct reliabilities in Tables 3 (model statistics for 5F scoring 
solution) and 4 (model statistics for 2F scoring solution) later 
in this article.

Factor Analyses. We conducted factor analyses after confirm-
ing an acceptable Kaiser-Meyer-Olkin measures of sample 
adequacy (KMO = 0.879) and a significant Bartlett’s test of 
sphericity (χ2(276) = 5149.713; p = 0.00). EFA and CFA sup-
port two scoring models for the PIPS, a 2F solution and a 5F 
solution. Both solutions use all 24 instructional practice items 
and are supported by moderate to good model fit statistics 
(Table 2). We present both the 2F and 5F options for scoring 
the PIPS, as different models satisfy different model fit criteria 
and coarse- and fine-grained instructional practice scores pro-
vide different information for users.

We considered other models supported by the data, includ-
ing a four-factor and 10-factor option (and other less statisti-
cally supported solutions). The four-factor solution is supported 
by Kaiser criterion, that is, we have four factors with eigenval-
ues greater than 1.0. However, the four-factor model requires 
some of the 24 items to be removed and has less logical item 
groupings than the 5F model. The 10-factor solution has the 
lowest number of factors supported by a chi-squared goodness-
of-fit test (χ2(81) = 105.698; p = 0.034). However, the 10-factor 
solution has some factors with only one item per factor (and, as 
such, these factors should be removed; Costello and Osborne, 
2005). Furthermore, since we have simpler models with accept-
able model fit statistics, the 10-factor solution is not the most 
parsimonious (Ferguson, 1954).

Measuring PIPS Factor Scores
Scoring Option A: The 5F Scoring Option. One of the options 
for scoring the PIPS is a 5F scoring option. This model provides 
more detail on the instructional practices of a participant or 
group of interest than the more simplified 2F model (see 
Scoring Option B). We present reliability scores, model fit statis-
tics, and items by factor for the 5F model in Table 3.

We generated the 5F model using our original conceptual 
framework; we then refined and confirmed the model through 
structural equation modeling. We originally had four a priori 
conceptual categories. However, since the four-factor CFA 
would have required removal of items of interest, we found we 
could maintain better model fit statistics if we split the assess-
ment factor into two factors, formative assessment (five items) 
and summative assessment (four items). After confirming that 

TABLE 2. PIPS model fit statistics for 2F and 5F solutions

Model fit criteria 2F solution 5F solution

Chi-squared (χ2) 920.316 1070.026

df 229 239
Chi-squared/df 4.02 4.48
CFI 0.811 0.832
RMSEA 0.066 0.071
Variance explained 37.28% 52.76%
Meets scree plot criterion Yes No
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the 5F model had good model fit statistics in the CFA, we 
renamed the constructs in the model to match their respective 
items. Factors in the 5F model include 1) student–student 
interactions, six items; 2) content delivery, four items; 3) for-
mative assessment, five items; 4) student–content engage-
ment, five items; and 5) summative assessment, four items.

Scoring Option B: The 2F Scoring Option. A more simplified 
scoring option for the PIPS is a 2F scoring option; this option 
includes one factor that describes “student-centered practice” 
(15 items) and another that describes “instructor-centered prac-
tice” (nine items). We selected the 2F model through EFA using 
a maximum-likelihood method extraction and promax with Kai-
ser normalization rotation. We extracted the data into sequen-
tially more complex models (i.e., a one-factor model, then 
two-factor, then three-factor, etc.). Our goal was to find the 

simplest model supported by acceptable model fit statistics that 
also was supported by qualitatively logical item groupings. We 
present reliability scores, model fit statistics, and items by factor 
for the 2F model in Table 4. We operationally define each PIPS 
factor, including those from both the 2F and 5F models, in Table 
5. We include factor loadings for the items in the 2F model and 
the CFA map to support the 5F model as Supplemental Material.

TABLE 4. PIPS factor reliability scores, model fit statistics, 
and items by factor for the 2F scoring solution

Factor 1: Student- 
centered practice

Factor 2: Instructor- 
centered practice

Reliability (α) 0.877 0.677
Number of items 15 9
Eigenvalue 5.774 3.285
Percent variance 

explained
24.059 13.686

Items P02, P04, P06, P07, P08, 
P09, P10, P12, P13, 
P14, P15, P16, P18, 
P19, P20

P01, P03, P05, P11, P17, 
P21, P22, P23, P24

Maximum 
possible sum

60 36

Sample items I structure class so that 
students regularly 
talk with one 
another about course 
concepts.

My class sessions are 
structured to give 
students a good set 
of notes.

I structure class so that 
students discuss the 
difficulties they have 
with this subject with 
other students.

I guide students through 
major topics as they 
listen and take notes.

TABLE 5. Operational definitions for the PIPS factors

Factor Model Operational definition

Instructor-centered 
practices

2F Practices in which the instructor is 
the sole or primary actor, 
including how the instructor 
presents information, design of 
summative assessments, and 
grading policies

Student-centered 
practices

2F Practices in which the students are 
the sole or key actor(s), 
including interactions among 
students in class, students’ active 
and constructive engagement 
with course content, and 
formative assessment practices

Student–student 
interactions

5F Practices that describe interactions 
among students in class

Content delivery 5F Practices that describe or influence 
how the instructor transmits 
information to the students

Student–content 
engagement

5F Actions in which students manipu-
late or generate learning 
materials or products beyond 
what was provided by the 
instructor (similar to active and 
constructive elements noted by 
Chi and Wylie, 2014)

Formative assessment 5F Actions to monitor student learning 
that provide feedback to the 
instructor to inform teaching 
and/or to students to inform 
their learning

Summative 
assessment

5F Actions for formal evaluation of 
student learning, including 
grading policies

TABLE 3. PIPS factor reliability scores, model fit statistics, and items by factor for the 5F scoring solution

Factor 1: Student–
student interactions

Factor 2: Content 
delivery practices

Factor 3: Formative 
assessment

Factor 4: Student–
content engagement

Factor 5: Summative 
assessment

Reliability (α) 0.825 0.644 0.641 0.606 0.447
Number of items 6 4 5 5 4
Eigenvalue 5.744 3.285 1.351 1.258 1.094
Percent variance explained 24.059 13.686 5.629 5.240 4.141
Items P10, P12, P13, P14, 

P15, P19
P01, P03, P05, P11 P04, P06, P08, P18, 

P20
P02, P07, P09, P16, 
P17

P21, P22, P23, P24

Maximum possible sum 24 16 20 20 16
Sample item I structure class so 

that students 
regularly talk with 
one another about 
course concepts.

I guide students 
through major 
topics as they 
listen and take 
notes.

I use student 
assessment results 
to guide the 
direction of my 
instruction during 
the semester.

I design activities that 
connect course 
content to my 
students’ lives and 
future work.

I adjust student scores 
(e.g., curve) when 
necessary to 
reflect a proper 
distribution of 
grades.
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vention was a deliberate choice, as we 
find it easier to compare weighted scores 
among factors than less comparable raw 
scores. Thus, to calculate a factor score 
from either PIPS model (2F or 5F), begin 
by adding scores for the items in that fac-
tor (see Tables 3 and 4 for items in a given 
factor). Continue by dividing by the max-
imum possible sum for that factor and 
then multiply by 100.

For example, calculate the content 
delivery score by first adding actual scores 
from items P01, P03, P05, and P11. 
Because each PIPS item can be rated as 
high as four (very descriptive of my teach-
ing), and there are four items in this factor, 
the maximum possible sum for content 
delivery is 16. Divide the actual factor sum 
by the maximum possible sum and multi-
ply by 100 to generate a factor score 
between 0 and 100.

Sample Score Calculation (for content 
delivery factor)

 Step 1. Σ(P01, P03, P05, P11) = actual 
factor sum

 Step 2. (actual factor sum/maximum possible sum); 16 = 
maximum possible sum
 Step 3. (actual factor sum/maximum possible sum) × 100 = 
factor score

Each factor score can vary between 0 
(not at all descriptive of my teaching) and 
100 (very descriptive of my teaching). Indi-
vidual factor scores can contribute to mean 
scores for groups of interest, for example, 
to make comparisons among departments, 
institutions, or demographic subgroups.

RQ2. What Are Some of the Emergent  
Patterns in the PIPS Data among 
the Four Surveyed Institutions and 
72 Surveyed Departments?
This subsection includes discriminant 
outputs and analyses that document differ-
ences in institutional, department, and 
demographic groups of interest.

PIPS Histogram. PIPS 2F and 5F scores can 
be represented on a frequency-based bar 
graph with each score along an axis (Figures 
1 and 2). Both Figures 1 and 2 represent 
PIPS factor scores as a proportion of the 
maximum sum score for a given factor and 
how each value fits with the original scale 
for the PIPS from “not at all descriptive” (0) 
to “very descriptive” (100). These represen-
tations can be used to highlight significant 
differences in 2F and 5F scores for an indi-
vidual instructor (as in Figure 1) or among 
groups of interest (in this case, among 2F 
scores for sampled institutions; Figure 2).

FIGURE 1. PIPS 2F and 5F scores for an individual instructor from Institution A.

FIGURE 2. Institutional differences in mean PIPS 2F scores by institution. Significant 
differences based on post hoc Scheffé tests: (a) institutional mean significantly 
different from the other three institutions (p < 0.05); (b) institutional mean significant-
ly lower than the two higher-scoring institutions (p < 0.05);(c) institutional mean 
significantly different from the highest- and lowest-scoring institutions 
(p < 0.05); (d) institutional mean significantly lower than the highest-scoring institu-
tion but not the other two institutions (p < 0.05); (e) institutional mean significantly 
higher than the lowest-scoring institution but not the other two institutions 
(p < 0.05); (f) institutional mean significantly higher than the two lowest-scoring 
institutions (p < 0.05).

How to Calculate PIPS Scores
PIPS scores are calculated for each factor by calculating the 
proportion of possible points for that factor. This creates a 
weighted sum of the factors scaled to 100. This scoring con-
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independent nature of the student- 
centered and instructor-centered factors 
from the 2F model was supported by no sig-
nificant correlation between the factors 
(r(703) = 0.026; p = 0.492) and consistent 
item loadings between EFA rotation 
methods; that is, the 2F item loadings for a 
varimax rotation (used for orthogonal data) 
are equivalent to the 2F item loadings on a 
promax rotation with Kaiser normalization 
(for oblique data).

In generating a scatter plot of the 2F 
scores, we find it helpful to place the cross-
ing of the axes at the midpoint (50, 50). This 
generates a matrix of instructor-centered 
and student-centered practices with varying 
degrees of descriptiveness from 0 to 100 
(Figures 3–5). In Figure 3, we present a scat-
ter plot of 2F PIPS scores for instructors at 
Institution A (N = 152), highlighting individ-
uals from case study departments. Figure 4 
is another 2F scatter plot of individual 
instructors, but at Institution D (N = 424). 
Points on the scatter plot can also represent 
department means in instructor- and stu-
dent-centered scores, as depicted in Figure 5.

Exploring Demographic Differences. We explore demographic 
differences generated by the PIPS as evidence of specific predic-
tive validity, not necessarily as a set of generalizable findings. We 
completed independent t tests and ANOVA comparisons to 
explore demographic differences between and among PIPS 
scores for different instructor groups. We found significant differ-

ences in 2F PIPS scores between several 
demographic groups and report these dif-
ferences in Figure 6. Significant differences 
include 2F PIPS scores between genders 
(n = 155 female; n = 141 male), between 
graduate student instructors (n = 93) and 
faculty (n = 798), and between STEM (n = 
473) and non-STEM (n = 418) faculty 
(Figure 6). We also found significant differ-
ences in 2F PIPS scores among faculty of 
differing academic rank. In Figure 7, we 
compare significant differences among 
these scores for full (n = 178), associate 
(n = 156), and assistant (n = 110) profes-
sors and adjunct (n = 137) and full-time, 
non tenure-track (n = 95) instructors. 
ANOVA also revealed student-centered 
practice (2F) scores were significantly dif-
ferent among ethnic groups (p = 0.043), 
but post hoc tests did not confirm these dif-
ferences. Other means from the 2F and 5F 
models likewise were not significantly dif-
ferent among ethnic groups.

We also conducted correlational anal-
yses to examine the 2F and 5F PIPS fac-
tors relationships to class size (n = 303; 
mean 95.2 ± 98.8 students), years 

FIGURE 3. PIPS scores for instructors in the 19 sampled departments at Institution A 
(N = 152). Case study departments are identified.

PIPS Scatter Plot. PIPS 2F scores can be placed on an x,y scatter 
plot based on the independent nature of the factors. On creation 
of the PIPS, we had no specific intention for the factors in the 
model to be orthogonal. Although we had autonomous categories 
in our conceptual framework, we expected that the final set of 
factors could be significantly related to one another. However, the 

FIGURE 4. PIPS scores from instructors in the 40 sampled departments at Institution D 
(N = 424). Where applicable, departments with similar classification as those selected for 
case study at Institution A are identified.
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teaching (n = 343; mean 16.6 ± 11.6 yr), and years at the 
institution (n = 343; mean 12.8 ± 10.4 yr). We report these 
correlations in Table 6. We also report correlations among 2F 
and 5F PIPS scores and self-reported proportions of time 
spent in lecture, doing small group work, providing individ-
ualized instruction, or doing other forms of instruction 
(Table 7).

Finally, on the basis of the significant 
correlation between class size and PIPS 
scores, we compare PIPS scores by disci-
pline but controlled for class size. We found 
that STEM instructors describe the content 
delivery (5F), summative assessment (5F), 
and instructor-centered practice (2F) 
factors as significantly more descriptive of 
their instruction than non-STEM instruc-
tors (p < 0.05). In contrast, when con-
trolling for class size, mean PIPS scores of 
STEM instructors do not significantly differ 
from non-STEM instructors for the stu-
dent–student interactions (5F), formative 
assessment (5F), or student-centered prac-
tice (2F) factors (p > 0.05).

DISCUSSION
Valid and reliable measurement of instruc-
tional practices in higher education set-
tings allows researchers, administrators, 
and other interested parties to plan for and 
evaluate reform initiatives (AAAS, 2013). 
The PIPS can differentiate among 
coarse- and fine-grained elements of the 

instructional practices of postsecondary instructors from any 
discipline. Furthermore, the PIPS is valid, reliable, and easy to 
score and can quickly collect data from a large number of 
participants.

Interpreting PIPS Outputs
Although information available through individual PIPS 
responses may be helpful for a single instructor, our study 

identifies institutional and departmental 
clusters in instructional practices (Figures 
3–5). These clusters support the notion 
that instructional practices are normative 
at both the institution and department 
level. Because instructional change is more 
successful when emergent from a group 
(Henderson et al., 2011) and the PIPS can 
identify institutional and departmental 
instructional practice clusters, we see lon-
gitudinal shifts in PIPS data for a group to 
be especially useful in measuring the suc-
cess of change initiatives. Further, identify-
ing clusters in results by department and 
institution supports the discriminant abil-
ity of the PIPS and highlights its usefulness 
as a measurement tool.

Demographic Differences
The primary purpose of this paper was to 
highlight the development and validation 
of the PIPS. We are providing demographic 
findings to illustrate specific predictive 
validity, document the discriminant ability 
of the PIPS, explore potentially useful data 
presentations, and situate our results in the 
greater body of literature. Consistency of 

FIGURE 6. Demographic group differences in PIPS factor scores for instructor-centered 
practice and student-centered practice, as generated by the 2F PIPS model. GTAs, 
graduate teaching assistants. (a) Mean score significantly different from respective group 
(p < 0.01); (b) mean score significantly different from respective group (p < 1E-9).

FIGURE 5. Mean department PIPS scores for 72 departments at the four sampled 
institutions, including SE bars for each department.
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(Walczyk and Ramsey, 2003; MacDonald 
et al., 2005; Dancy and Henderson, 
2007). We likewise note that class size 
had a significant positive correlation with 
traditional teaching practices as described 
by the items in the content delivery (r = 
0.131; p < 0.05) and summative assess-
ment (r = 0.137; p < 0.05) factors. We 
also found significant negative correla-
tion with class size and student–student 
interactions (r = −0.122; p < 0.05). Hen-
derson et al. (2012) likewise found a neg-
ative correlation between class size and 
student-centered pedagogies.

By Discipline. We found significant dif-
ferences between STEM (n = 438) and 
non-STEM (n = 389) instructors across 
several PIPS factors. Instructors from non-
STEM disciplines were significantly more 
likely than STEM instructors to describe 
student-centered practice (2F) as descrip-
tive of their teaching (p = 2.35 E-9). Sim-
ilarly, STEM instructors were significantly 
more likely to describe instructor-centered 
practice (2F) as descriptive of their teach-
ing (p = 3.67 E-10). This is consistent 
with the finding that lecture-based peda-
gogies are more prevalent among STEM 
instructors than among instructors from 

other disciplines (e.g., Hurtado et al., 2011).
Our findings differ somewhat when controlling for class 

size. We support the conclusion that STEM instructors have 
significantly higher scores than non-STEM instructors in 
instructor-centered practice (2F), content delivery (5F), and 
summative assessment (5F) factors (p < 0.05). In contrast, 
STEM instructors from our sample did not have significantly 
different scores than non-STEM instructors for student-cen-
tered practice (2F), student–student interactions (5F), and 
formative assessment (5F) when we controlled for class size 
(p > 0.05). This suggests that student-centered practices are 
more mediated by class size (e.g., Walczyk and Ramsey, 
2003) than by the nature of the content.

By Gender. Instructor-centered practices (2F) were signifi-
cantly more descriptive of male instructors than female 
instructors (p < 0.01). This factor includes statements such 
as “students listening and taking notes” and “teaching with 
the assumption that students have little incoming knowl-
edge.” Similarly, the content delivery (5F) and summative 
assessment (5F) factors were significantly more descriptive 
of male instructors than female instructors (p < 0.05). 
Henderson et al. (2012) and Kuh et al. (2004) likewise 
found women using fewer instructional practices of this 
nature. In contrast, we did not identify gender differences 
for factors that describe more research-based instructional 
strategies. Mean scores for student-centered practice (2F), 
student–student interactions (5F), student–content engage-
ment (5F), and formative assessment (5F) were not signifi-
cantly different by gender.

FIGURE 7. Academic rank differences in instructor-centered and student-centered 
practice mean scores, as generated by the 2F PIPS model. (a) Mean score significantly 
higher than the lowest-scoring group (p < 0.05); (b) mean score significantly higher than 
the two lowest-scoring groups (p < 0.05); (c) mean score significantly lower than the two 
highest-scoring groups (p < 0.05); (d) mean score significantly lower than the high-
est-scoring group (p < 0.05).

PIPS scores with prior literature supports the validity of the PIPS 
and its usefulness as a measurement tool. We also identify a few 
results that are different from other measures in the field, which 
present both opportunity for further exploration or potential 
domains in which the PIPS has less discriminant ability. How-
ever, since our goal was development and validation, we leave 
demographic a priori hypotheses for future work.

By Class Size. Faculty often mention class size as a barrier 
to incorporating research-based instructional strategies 

TABLE 6. PIPS factor correlations with reported class size, 
years teaching, and years at institution

Class size
Years 

teaching
Years at 

institution

2F PIPS model
Instructor-centered practice 0.098 0.187** 0.163**
Student-centered practice –0.095 0.059 0.049

5F PIPS model
Content delivery 0.131* 0.106 0.111
Summative assessment 0.137* 0.141* 0.123*
Student–student interactions –0.122* 0.027 0.023
Student–content engagement –0.081 0.116 0.094
Formative assessment 0.034 –0.049 –0.093

Class size 1 0.051 0.011
Years teaching 1 0.864**
Years at institution 1

*Correlation is significant at the 0.05 level (two-tailed).
**Correlation is significant at the 0.01 level (two-tailed).
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By Years Teaching. More senior faculty are often thought to 
be less innovative than younger faculty (Hativa, 2000; Kuh 
et al., 2004). However, when controlling for other study vari-
ables, Henderson et al. (2012) did not find a correlation to 
teaching practices and years teaching. We note years teaching 
was significantly correlated (p < 0.05) with some of our fac-
tors, including instructor-centered practice (2F), content 
delivery (5F), and summative assessment (5F). However, we 
also note that years teaching was not significantly correlated 
with student-centered practice (2F), nor were years teaching 
correlated to student–student interactions (5F), student–con-
tent engagement (5F), and formative assessment (5F).

Utility of PIPS Scatter Plots
One question that arises with the use of the PIPS scatter plots is 
whether it is meaningful to be in different quadrants. We do not 
know if the quadrants represent distinct populations of instruc-
tors. When interpreting the scatter plots, it is important to 
remember that the 0–100 scale is not a proportion of class time 
but how descriptive a given factor is for the respondent. For 
example, it is possible for instructors to describe both instruc-
tor-centered practices and student-centered practices as some-
what (50) to very descriptive (100) of their teaching, placing 
them in the upper right quadrant.

We find the quadrants helpful for highlighting institutional 
and departmental differences, as in Figures 3 and 4. We suspect 
that there may be meaningful differences among the quadrants 
but are unable verify this suspicion in the current study. We also 
see the quadrants as helpful in documenting the face validity of 
the PIPS, that is, most instructors surveyed are able to find PIPS 
items they feel represent their instructional practices. This is 
confirmed by a low number of individuals in the lower left 
quadrant of the multi-institutional scatter plot (48 of 687 
respondents).

Implications for Policy
It is important for researchers, institutions, and policy makers 
to have a valid and reliable instrument that can describe a 
range of traditional and research-based teaching practices 
across instructors from multiple departments. This can be use-
ful, for example, to identify outlier departments (positive devi-
ants that can be learned from) or to document the results of 
change initiatives longitudinally.

Future Work
One of our next steps will be to triangulate the results of the 
PIPS with teaching observation data collected using the TDOP 
(Hora et al., 2012) and interviews with instructors. These 
observations will provide additional support for our constructs 

and help to identify what, if anything, is lost in using the PIPS 
over a more resource-intensive observation. We expect to see 
reasonable alignment of instructional practices reported by the 
PIPS with those observed by the TDOP, especially since the 
TDOP was used as a reference for developing PIPS items. Future 
work will also include exploring other indicators of reliability 
for the PIPS, including split-halves and test–retest reliability.

Access to the Instrument
The PIPS is available in its paper form as Supplemental Material. 
Users are also welcome to contact the authors for use of the PIPS 
in its Qualtrics form. If you use the PIPS, we request that you use 
it in its entirety and share the data with our research team. We 
also suggest that you consider using the PIPS with its companion 
instrument, the authors’ Climate Survey (Walter et al., 2015). 
This will help us to improve both instruments and contribute to 
an improved research-based understanding of how elements of 
the academic workplace influence instructional practices.

TABLE 7. Pearson correlations among PIPS factor scores (2F model) and participant estimations of how time is spent in class: doing lecture, 
small group work, individualized instruction, and other instruction

Instructor-centered 
practice

Student-centered 
practice

Estimated % 
lecture

Estimated % 
small group

Estimated % individual 
instruction

 Estimated % 
other instruction

Instructor-centered practice 1 0.026 0.318** −0.360** −0.051 −0.064

Student-centered practice 1 −0.409** 0.258** 0.206** 0.275**

**Correlation is significant at the 0.01 level (two-tailed).
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