Algebra Preliminary Exam
August 16, 2001

Instructions: Do all seven problems. You will have four hours for this exam.

1. (a) Give statements of the (first) three isomorphism theorems for groups.
 (b) (Goursat’s Lemma) Let G_1 and G_2 be groups, and let H be a subgroup of $G_1 \times G_2$ such that the two projections $p_1 : H \to G_1$ are surjective. Let N_1 be the kernel of p_2, and let N_2 be the kernel of p_1. One can identify N_1 and N_2 with normal subgroups of G_1 and G_2 respectively (check!). Prove that $G_1/N_1 \cong G_2/N_2$.

2. Let G be a simple group of order 60. Show that the action of G by conjugation on its set of Sylow subgroups gives an embedding $G \hookrightarrow A_6$ of G into the alternating group on 6 letters.

3. Let R be a ring and M a (left) R-module.
 (a) Prove that $\text{End}_R(M) := \text{Hom}_R(M, M)$ is a ring.
 (b) (Schur’s Lemma) Suppose M is a simple R-module (recall that M is simple if it is nonzero and has no nontrivial submodules). Prove that $\text{End}_R(M)$ is a division ring.

4. Observe that \mathbb{Q} under addition is a module over the integers \mathbb{Z}.
 (a) Show \mathbb{Q} is not a finitely generated \mathbb{Z}-module.
 (b) Show \mathbb{Q} is not a free \mathbb{Z}-module.

5. Let R be an integral domain.
 (a) Define what it means for a nonzero element p of R to be prime, and what it means for p to be irreducible.
 (b) Mark the following statements TRUE or FALSE.
 (i) If p is prime then p is irreducible.
 (ii) If p is irreducible then p is prime.
 (c) Of the items in (b), prove those which you marked TRUE.
 (d) Complete the following statement:
 An ideal P in R is prime if and only if R/P is .
 (Recall that, by assumption, a prime ideal is proper.)
 (e) Prove your assertion in (d).
 (f) Show that if R is a principal ideal domain, then $p \in R$ is prime if and only if it is irreducible.

6. Let K/F be a finite separable field extension of prime degree p. Suppose $K = F(\theta)$.
 (a) Show that θ has exactly p distinct Galois conjugates in some algebraic closure of K.
 (b) Let $\theta = \theta_1, \theta_2, \ldots, \theta_p$ be the Galois conjugates of θ. Show that if $\theta_2 \in K$ then K is Galois, with cyclic Galois group.

7. Let ζ be a primitive 12th root of unity.
 (a) Find all the automorphisms of the field extension $\mathbb{Q}(\zeta)$ over \mathbb{Q}.
 (b) Find the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q}.
 (c) Find all intermediary field extensions between \mathbb{Q} and $\mathbb{Q}(\zeta)$.