Instructions: There are seven questions, some with several parts. Write your solution to each problem on a separate sheet of paper, with your name at the top.

(1) For each \(n \), let \(S_n \) be the symmetric group on \(n \) letters, and let \(G \) be a finite group. Prove the following:
 (a) If the order \(|G|\) of \(G \) is a product of two distinct primes then \(G \) is not simple.
 (b) If \(|G| = p^2q\) for \(p \) and \(q \) distinct primes, then \(G \) is not simple.
 (c) If \(n \leq 4 \), then \(S_n \) has no non-abelian simple subgroups.
 (d) If \(G \) is a non-abelian simple group and \(H \) is a proper subgroup of \(G \), then \(|G : H| \geq 5\).

(2) Let \(V = \mathbb{R}^4 \). Let \(S \) be the set of all two-dimensional subspaces of \(V \), and fix \(W \in S \). Let \(G = GL(V) \) (the group of invertible linear operators on \(V \)) act naturally on \(S \), and let \(H = \{ g \in G : g \cdot W = W \} \). Show that \(H \) has exactly three orbits on \(S \).

(3) Let \(k \) be a field, and let \(R \) be the ring of \(n \times n \) matrices with entries in \(k \). Let \(V = k^n \). Show that \(V \) is a simple \(R \)-module, with each element of \(R \) acting by the associated linear transformation.

(4) Let \(R \) be a commutative ring with identity, \(I \) an ideal of \(R \), and \(M \) a module over \(R \). Let \[
S = \{ a \cdot m : a \in I, m \in M \}.
\]
 (a) Is \(S \) an \(R \)-submodule of \(M \)? Prove or give a counterexample.
 (b) Let \(I \cdot M \) be the \(R \)-submodule of \(M \) generated by \(S \). Prove that \(M \otimes_R (R/I) \cong M/(I \cdot M) \).

(5) Let \(R \) be commutative ring with identity. The **Krull dimension** of \(R \), denoted by \(\text{dim}(R) \), is the supremum of the indices \(d \) of all strictly increasing chains
 \[
P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_d
\]
 of prime ideals in \(R \). Define \(\text{dim}(R) = \infty \) if there is no finite supremum.
 (a) Determine the Krull dimension \(\text{dim}(R) \) if \(R \) is a field.
 (b) Determine the Krull dimension \(\text{dim}(R) \) if \(R = \mathbb{Z} \).
 (c) Show that an ideal \(P \) in \(R \) is prime if and only if \(R/P \) is an integral domain.
 (d) Show that \(\text{dim}(R) \geq n \) if \(R = k[x_1, \ldots, x_n] \) for \(k \) a field.

(6) Let \(E = \mathbb{Q}(a) \) for \(a = \sqrt{1 + \sqrt{2}} \).
 (a) Find \(|E : \mathbb{Q}| \).
 (b) Identify \(\text{Gal}(E/\mathbb{Q}) \).
 (c) How many subfields of \(E \) are there?

(7) Consider the polynomial \(f(x) = x^7 - 1 \in \mathbb{F}_2[x] \).
 (a) Find a splitting field \(K \) for \(f(x) \).
 (b) Factor \(f(x) \) into irreducible polynomials over \(\mathbb{F}_2[x] \).
 (c) Show that the squaring map \(\varphi(a) = a^2 \) is an automorphism of \(K \) fixing \(\mathbb{F}_2 \), and find the orbits of \(\varphi \).