Instructions. Work all of these problems and write their solutions clearly and completely (and legibly). Write your solution to each problem on a separate sheet of paper, with your name at the top of each page. You have 6 hours to complete this exam.

1. Let \(R \) be a commutative ring with 1, and let \(I \) and \(J \) be ideals in \(R \) with \(I + J = R \).

 (a) Let \(a, b \in R \). Prove that there exists \(c \in R \) such that \(c \equiv a \mod I \) and \(c \equiv b \mod J \).

 (b) Deduce from the above that \(R/(I \cap J) \) is isomorphic to the direct product \(R/I \times R/J \).

2. Show that any linear operator on a finite dimensional vector space (over a field of characteristic not equal 2) which satisfies \(T^2 = I \) is diagonalizable.

3. Let \(G \) be a group, and let \(N \) be a normal subgroup of \(G \). Let \(\phi : G \to G/N \) be the canonical homomorphism. Let \(H \) be another group, and \(f : G \to H \) be a homomorphism.

 (a) Show that there is a homomorphism \(\bar{f} : G/N \to H \) such that \(\bar{f} \circ \phi = f \) if and only if \(N \leq \text{Ker}(f) \).

 (b) Assuming \(\bar{f} \) exists, show that it is unique.

4. Consider the polynomial \(f = x^8 - 1 \in \mathbb{F}_3[x] \).

 (a) Find a splitting field \(K \) for \(f \).

 (b) Factor \(f \) into irreducible polynomials over \(\mathbb{F}_3[x] \).

 (c) Show that the cubing map \(\phi(a) = a^3 \) is an automorphism of \(K \) fixing \(\mathbb{F}_3 \), and find the orbits of the group generated by \(\phi \).

5. Let \(G \) be a group of order \(p^2 q \), where \(p \) and \(q \) are distinct primes. Show that \(G \) is not simple.

6. Suppose \(R \) is a ring with 1 and \(M \) is a left \(R \)-module. Let \(N_1 \subseteq N_2 \subseteq \cdots \) be an ascending chain of submodules of \(M \). Show that \(\bigcup_{i=1}^{\infty} N_i \) is a submodule of \(M \).