Trauma-Informed JJ

Jim Henry, PhD, MSW
Mark A. Sloane, DO
Western Michigan University
Kalamazoo, MI
31 March 2015

Moving Stories & Practical Strategies/Techniques For Youth with Brain-based Disorders
Why are you here this morning?

A) They had to drag me here!

B) I will sit here, but am cynical so I will dismiss what you have to say.

C) I am willing to listen... depending on what you say.

D) I am a dreamer and know I can do something different.
How do we engage you today?

- Magic tricks
- Whoever stays until the end wins beer
- You learn more about yourself
- You learn more about the kids and families you serve
Traditional Paradigm

Crime/Diagnostic - Focused

Willful Behavior

Service - Driven

Trauma-Informed

Impact-Focused

Brain-Behavior based

Resiliency-focused

Worker Resiliency
Event

Traumatic Impact
It’s time to meet Paul
The Real Game of Life: JJ Version

Prenatal Exposure to Alcohol and Drugs; Maternal Stress

Infancy: Unresponsive Caregiver Insecure attachment

Toddler: Physical Maltreatment

Emotionally dysregulated and Aggressive Child Behavior

Child as Bully Child being Bullied

Child: DSM Label ODD, RAD, Bipolar

Enterprising Juvenile Justice System

Attention deficits at school Falling behind in school

Behavior problems at school; grade retention Suspensions

Detention/ Residential placement
16 year-old teen male with long history of trauma and residential placement

- “I can’t look forward to nothing because I can’t do anything about it.”

- “I stay in a mellow state of nothing. I don’t feel nothing.”
“If I think about my life, it would drive me crazy.

I consider treatment as a punishment and I distrust others because they have not been honest with me.”
Reviewing CTAC Assessment Data for 35 youth in residential and detention
Residential Youth: Age Distribution

Percentage Per Age

- Age 8: 11.40%
- Age 9: 8.60%
- Age 10: 8.60%
- Age 11: 8.60%
- Age 12: 11.40%
- Age 13: 8.60%
- Age 14: 11.40%
- Age 15: 20%
- Age 16: 8.60%
- Age 17: 11.40%
Residential: Frequencies of Race

Percentage Per Race

<table>
<thead>
<tr>
<th>Race</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>57.10%</td>
</tr>
<tr>
<td>African American</td>
<td>22.90%</td>
</tr>
<tr>
<td>Multi-Racial</td>
<td>20%</td>
</tr>
</tbody>
</table>
Residential: Frequencies by Gender

<table>
<thead>
<tr>
<th>Gender</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>65.70%</td>
</tr>
<tr>
<td>Female</td>
<td>34.30%</td>
</tr>
</tbody>
</table>
K-BIT 2 Results Per Residential Status

<table>
<thead>
<tr>
<th></th>
<th>Vocabulary</th>
<th>Matrices</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Placement</td>
<td>89.75</td>
<td>93.92</td>
<td>91.13</td>
</tr>
<tr>
<td>Residential</td>
<td>88.23</td>
<td>87.83</td>
<td>86.11</td>
</tr>
<tr>
<td>Total</td>
<td>89.65</td>
<td>93.52</td>
<td>90.80</td>
</tr>
</tbody>
</table>
ADHD-RS Results Per Living Arrangement

<table>
<thead>
<tr>
<th></th>
<th>Hyperactive-Impulsive</th>
<th>Inattentive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Placement</td>
<td>T=72.95</td>
<td>76.84</td>
<td>76.39</td>
</tr>
<tr>
<td>Residential</td>
<td>T=83.96</td>
<td>81.15</td>
<td>85.42</td>
</tr>
</tbody>
</table>
Sensory Profile Results: Children in Residential

<table>
<thead>
<tr>
<th>Sensory Modality</th>
<th>Probable Difference</th>
<th>Definite Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactile</td>
<td>29%</td>
<td>16%</td>
</tr>
<tr>
<td>Taste/Smell</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>Movement</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>Under-responsive</td>
<td>3%</td>
<td>26%</td>
</tr>
<tr>
<td>Auditory Filtering</td>
<td>20%</td>
<td>48%</td>
</tr>
<tr>
<td>Low Energy/Weak</td>
<td>3%</td>
<td>19%</td>
</tr>
<tr>
<td>Visual/Auditory</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td>Total</td>
<td>11%</td>
<td>21%</td>
</tr>
</tbody>
</table>
CBCL Results: Residential vs Community Placement

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Placement</td>
<td>60.38</td>
<td>62.83</td>
<td>58.28</td>
<td>63.17</td>
<td>63.5</td>
<td>66.51</td>
<td>64.70</td>
<td>66.84</td>
<td>60.75</td>
<td>65.06</td>
<td>65.11</td>
</tr>
<tr>
<td>Residential</td>
<td>61.83</td>
<td>63.07</td>
<td>56.00</td>
<td>64.07</td>
<td>63.5</td>
<td>67.55</td>
<td>66.28</td>
<td>68.10</td>
<td>61.97</td>
<td>67.73</td>
<td>67.37</td>
</tr>
</tbody>
</table>
Hyter Pragmatic Protocol Results: Children in Residential

<table>
<thead>
<tr>
<th>Demonstrated Difficulty</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversational Skills</td>
<td>39%</td>
</tr>
<tr>
<td>Story Retelling</td>
<td>59%</td>
</tr>
<tr>
<td>Story Generation</td>
<td>74%</td>
</tr>
<tr>
<td>One-Person Perspective</td>
<td>10%</td>
</tr>
<tr>
<td>Two-Person Perspective</td>
<td>60%</td>
</tr>
<tr>
<td>Three-Person Perspective</td>
<td>70%</td>
</tr>
<tr>
<td>Non-Literal Statements</td>
<td>60%</td>
</tr>
</tbody>
</table>
Hyter Pragmatic Protocol Results Per Residential Status

Percent that “Demonstrated Difficulty”

- **Story Retelling**: 35.20% (Community Placement, n=176), 60.90% (Residential, n=23)
- **Story Generation**: 46.50% (Community Placement), 75% (Residential)

P-values:
- Story Retelling: p=0.022
- Story Generation: p=0.015
PEERAMID 2 Results: Residential and Community Placements

Receptive Language ($P = .343$)

<table>
<thead>
<tr>
<th></th>
<th>Res.-Strength</th>
<th>Res.-Moderate or Major</th>
<th>Com.-Strength</th>
<th>Com.-Moderate or Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>20%</td>
<td>25%</td>
<td>75%</td>
<td>80%</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PEERAMID 2 Results: Residential and Community Placements

Expressive Language (P= .005)

- **Res.-Strength**: 7%
- **Res.-Moderate or Major**: 93%
- **Com.-Strength**: 29%
- **Com.-Moderate or Major**: 71%
PEERAMID 2 Results: Residential and Community Placements (Continued)

Sequencing (P = .009)

- **Res.-Strength**: 7%
- **Res.-Moderate or Major**: 93%
- **Com.-Strength**: 26%
- **Com.-Moderate or Major**: 74%
PEERAMID 2 Results: Residential and Community Placements

Memory (P = .074)

- Res.-Strength: 6%
- Res.-Moderate or Major: 94%
- Com.-Strength: 18%
- Com.-Moderate or Major: 82%
PEERAMID 2 Results: Residential and Community Placements

![Bar Chart]

Attention (P = .083)

- **Res.-Strength**: 6%
- **Res.-Moderate or Major**: 17%
- **Com.-Strength**: 94%
- **Com.-Moderate or Major**: 83%
PEERAMID 2 Results: Residential and Community Placements

Affect (P = .010)

- Res.-Strength: 33%
- Res.-Moderate or Major: 67%
- Com.-Strength: 57%
- Com.-Moderate or Major: 43%
DSM-IV Diagnoses for Children in Residential

- PTSD: 57%
- ADHD: 23%
- Mood Disorder: 26%
- Adjustment Disorder: 26%
- Anxiety Disorder: 20%
- Depressive Disorder: 34%
- Adjustment Disorder: 26%
- Personality Disorder: 20%
- Depressive With Diagnosis: 34%
Number of types of maltreatment experienced (out of 14, including natural disaster, community violence, etc. from Core Data Set)

Maltreatment Types based on Living Arrangement

- Out of Home: n=144
- Residential: n=28

Number of Types of Maltreatment (Controlled for age, p=.07)
What questions do these data raise?
Key Questions for JJ replacement options/decisions?

- How can we explain the **neurobehavioral similarities** between residential and community placement youth?

- Do the **significant neurodevelopmental differences** in expressive language, sequencing, attention, and memory (i.e. executive function) contribute to residential placement decisions?

- **How** should residential treatment address the ND differences described above?
The Response:

Two Judicial Realities
The JJ Challenge

..."All too often the convenient decision is wrapped in a package as the right one"...

Judge Hofmann (Texas Child Protection Court) 2013
Hon. Michael Nye
Hillsdale (MI) Probate Judge (retired)
So...How do we get this done in Alaska???
It all starts with **Trauma Screening & Neurodevelopmental Trauma Assessment**
The JJ Story of “Chuck”
A Difficult to Believe Story

- The Call from the Judge

- “He used a sink as a weapon”

- “We can’t afford $414/day”

- “Can you see him?”
More Sordid Details (re 16 y/o Chuck)

- Entered residential from psychiatric facility at age 10
- 7 residential / detention stays over 6 years
- 15 medication trials (then only on Seroquel for sleep)
- Bipolar and Conduct Disorder Dx at 2 years of age!
- All the aggression took place at Mom’s or inside the walls
- Staff betrayal common occurrence
Neurodevelopmental Trauma Assessment

- First impressions of Chuck...Hey wait a minute...
- Verbal IQ 84, Non-Verbal 94
- WRAT-4: Reading 100, Spelling 126, Math 117
- Major ND concerns: Expressive & Receptive Language, Memory, Executive Function (not Hyperactive)
Neurodevelopmental Trauma Assessment

- **Trauma Symptom Checklist**: Elevated scores: Anger, Dissociation

- **Psychosocial Interview**: Prenatal stress, multiple losses, chronic anger, cycle of trauma suspected (later confirmed), chronic complex trauma, trust issues, worsening cycle of targeting by fellow “inmates, “in lock-up for 6 years”
Trauma-informed Diagnostic Formulation

- Institutionalization (6 years) exacerbates early trauma
- Continuous Fight-Flight survival mode
- Hope was dependent on getting out
- Resiliency factors were significant:
 - Self-Efficacy (IQ, survival inside the walls, planned med wean)
 - Relatedness (network of +/- relationships)
 - History of reasonably **solid regulation** in the community
Trauma-informed

Next Steps

- “We have to get him out of there”
- Security camera provides a way out
- Judge takes a courageous stand
Trauma-informed, Resiliency-Based Case Planning

- Customized trauma-informed MST
- Brain-based / trauma-informed medication treatment
- Family placement / ongoing family psycho-education
- Trauma-informed probation
- Monthly consultation visits with MAS
The Next Chapter: Chuck’s Life Outside

- Family placement: less than optimal
- Toxic relationship with mom leads to Pine Rest
- The STATE SPEAKS: “He had his chance”...
- STATE takes a stand...
- Judge takes over...
The Birthday Tale...

- Saying goodbye to Aunt Sadie...
- 17 years old and free as a bird
- Day in court is memorable
- 10 months out...a work in progress
- Every day brings more hope...
Trauma-informed Takeaways

- Neurodevelopmental trauma assessment provides information that looks at the context, the environment, and resiliency factors
- Realistic optimism trumps cynicism
- Advocacy demands risk & challenges convenience
- Commitment by the Team to build resiliency
- Brain-behavior-based practice is essential and transforming
Building a Brain-Based Trauma-Informed FASD-informed Transformational System for JJ
A Vision for JJ

BRAIN

BEHAVIOR

WELL BEING

HARM

STS

SOLUTIONS

FUTURE
Challenging behavior in JJ

Why vs How
Trauma explains residential conundrums
A Brain-Behavior Vision for JJ
Brain – Behavior Functional Model:
Step by Step JJ Explanations

Neurodevelopmental Core Base
(IQ, Language, Learning Style, Attachment potential, etc)

Sensory Processing / MSI

Brakes vs Accelerator

Complex Affect Regulation

Social Communication

Behavioral Choice / Free Will
Brain – Behavior Functional Model:
Step by Step JJ Explanations

Neurodevelopmental Core Base
(IQ, Language, Learning Style, Attachment potential, etc)

Sensory Processing / MSI

Brakes vs Accelerator

Complex Affect Regulation

Social Communication

Behavioral Choice / Free Will
Brakes vs Accelerator

Delicate Balance of Regulation:

Top-Down “Brakes” (Prefrontal Cortex)

Bottom-Up “Accelerator” (Brainstem/Limbic System)
The Human Brain

Brakes (Upstairs)

Accelerator (Downstairs)
Accelerator vs Brakes: Real World JJ Impact

Way too wound-up / “wild” (“Tigger - on crack”)

Too wound-up (Tigger)

Optimal “Goldilocks” Arousal

“Goldilocks” Comfort Zone
Just Right” Energy Level

Bored / Low energy / Tired & sleepy (Ee-yore)

Total shut-down (via parasympathetics) “Ee-yore on Quaaludes”
Brake-Accelerator Functioning

JJ Correlates / Realities

Accelerator Issues:
- ↑ in Panic / Worry
- ↑ Trauma Triggers
- ↑ in Anger / Explosiveness
- ↑ in Mania / Hypomania
- ↓ in Depression
- ↑ in Drug Craving
- Drug withdrawal:
 - ↑ Meth / ↓ Opiates

Brakes Issues
- ↓ working memory
- ↓ Impulse control
 - Critical skill when craving drugs
 - Genetic ADHD issues
 - Trauma impact
 - FASD impact
 - Drug impact (over time)
Brain – Behavior Functional Model:
Step by Step JJ Explanations

Neurodevelopmental Core Base
 (IQ, Language, Learning Style, Attachment potential, etc)

Sensory Processing / MSI

Brakes vs Accelerator

Complex Affect Regulation

Social Communication

Behavioral Choice / Free Will
Hyter Model (2012) of Social Communication (Sloane Revision)
Hyter-Sloane Model (2013) of Social Communication

All components are impacted by prenatal alcohol exposure and traumatic stress.

- Language/Pragmatic Language
- Working Memory
- Social Cognition
- Complex Affect Regulation
Brain – Behavior Functional Model: Step by Step JJ Explanations

Neurodevelopmental Core Base
(IQ, Language, Learning Style, Attachment potential, etc)

Social Communication

Complex Affect Regulation

Brakes vs Accelerator

Behavioral Choice / Free Will
What about behavior / choice / free will / willfulness ??
Don’t Forget About the Steering
Final JJ Brain-Behavior Thoughts: Regulation & Willfulness:

Power Steering vs Manual Steering

- **Regulated** steering = *power* steering!
 - Easier to make appropriate motor / behavioral / emotional decisions while regulated

- **Dysregulated** steering = *manual* steering
 - Tougher to keep the behavioral “car” on the road
The Brain-Behavior JJ connection:
Seamless mesh of all 3 components

- **Genetics / Epigenetics**
 - What you inherit from both parents

- **Intrauterine environment**
 - During pregnancy

- **Extrauterine environment**
 - After pregnancy
Combined impact on neurodevelopment:
The CTAC “attributional stress” experience

- CTAC: evaluated 3200+ children since Feb 2000
- 37% of our traumatized child welfare sample (6-15 y/o) have been diagnosed with FASD
- CTAC first to describe *additive impact* of trauma + FASD on neurodevelopment (Henry, Sloane, & Black-Pond 2007)
- CTAC has not had much experience with *non-traumatized* FASD children
 - This FASD population: a *critical* research question
The Brain-Behavior Connection: Complexities & Realities

- Genetics / Epigenetics
- Neurodevelopmental strengths / weaknesses
- Temperament / Personality
- Family history of:
 - Attentional disorders (ADHD)
 - Learning disorders (e.g., Dyslexia)
 - Mood disorders (Depression / Bipolar)
 - Anxiety Disorders
 - Neuropsychiatric disorders (Tourette Disorder)
Behavioral Epigenetics: The future is now!

- Epigenetics: chemical alterations to DNA after conception
- Epigenetics is the **ultimate link** between nature & nature
- Increasing evidence that these epigenetic alterations may be passed on to the next generation
- Can we assess this in the JJ setting?
The Brain-Behavior Connection: Complexities & Realities

- Intrauterine environment
 - Exposure to drugs (legal / illegal)
 - Maternal stress
 - Maternal nutrition
 - Exposure to alcohol
The Brain-Behavior Connection: Complexities & Realities

- **Intrauterine Drug Exposure:**
 - The “Myth” of Meth (& crack / cocaine)
 - “Mixing and matching” drugs while pregnant
 - Multiple drug use in pregnancy overwhelms even ultra-fast research computers!
 - Nicotine use *increases* ADHD risk 4-fold
 - Cannabis use in pregnancy remains a bit controversial
 - The need for animal models to *clarify*
 - Opiate use during pregnancy (Neonatal Abstinence Syndrome)
The Brain-Behavior Connection: Complexities & Realities

Chronic and Severe Prenatal Stress:
- Growing appreciation of negative impact on fetus
- What level of stress is damaging to fetus?
- Placenta buffers mild-mod. stress: protects fetus
- By **12 weeks** gestation, the limbic system and PFC are susceptible to chronic toxic stress (via cortisol)
- Prenatal stress can **lower** birth weight
- Prenatal stress can impact **adult health** (think ACES)
- Solid early life parenting / attachment can be protective (and can **reverse** some negative impact)
Influence of Prenatal Alcohol Exposure
FAS: not the whole story
Fetal Alcohol Spectrum Disorders (FASD)

- Fetal Alcohol Syndrome
- Partial FAS
- Alcohol-related Neurodevelopmental Disorder (ARND) ("mild-moderate" FAS)
- Neurobehavioral Disorder - Associated with Prenatal Alcohol Exposure (DSM-5)

Adapted from Streissguth
ND-PAE: Neurobehavioral Disorder-associated with Prenatal Alcohol Exposure

- Now appearing in DSM-5! (“Condition for further study”)
- De-emphasis on FAS facial features
- Functional impairment is key:
 - Neurocognitive
 - Self-Regulation
 - Adaptive behavior
- History of Prenatal alcohol: critical piece
- AAP FASD/ND-PAE Workgroup project
Fetal Alcohol Spectrum Disorder:
Clinical Pearls of Wisdom

- “Mild – Moderate” FASD is still very problematic
- It is all about **when** the drinking occurred (during the pregnancy) and **how much** alcohol was consumed **per session**
- Maternal blood alcohol level = fetal blood alcohol
- Meth-Alcohol link: “Swiss cheese brain” issues
- Confusion over why **all** fetal ETOH exposure is not created equal (SES / trauma risk factors)
FASD: Critical Facial Abnormalities

- Palpebral fissure (small eyes)
- Thin upper lip
- Smooth philtrum
Fetal Alcohol Syndrome:
It doesn’t always look like this
...It can look like this!...clinical examples of FAS: transcending race
Severe brain damage caused by prenatal alcohol exposure

5-day old infants

photo: Clarren, 1986
Corpus Callosum

- 100 million neurons!!!
- Connects the two brain hemispheres
- Allows the left side to communicate with the right side
- Assists the individual child to calm down during / after “meltdown”
- Is often damaged/altered by prenatal alcohol exposure / traumatic stress
Corpus Callosum
Gross structural abnormalities in FAS (12 year old male subjects)

Normal Development

Fetal Alcohol Syndrome
Star Trek Medicine: Diffusion Tensor Imaging

Inter-hemispheric Fiber Tractography through Corpus Callosum

Fractional anisotropy maps

FASD
Control

Anatomical images
Child Traumatic Stress & the Developing Brain
"Trauma Trumps Everything"

Sandra Bloom, MD

- Trauma – Substance Abuse connection
- Trauma – Mental Health connection
- **Trauma – Juvenile Justice connection**
- Trauma – School failure connection

- Cycle of trauma is **pervasive**... but can be addressed, treated, & prevented
Types of Stress

Positive
Brief increases in heart rate, mild elevations in stress hormone levels.

Tolerable
Serious, temporary stress responses, buffered by supportive relationships.

Toxic
Prolonged activation of stress response systems in the absence of protective relationships.
Traumatic Stress & the Child’s Developing Brain

- Early and ongoing childhood toxic traumatic stress to the developing brain results in:
 - Physical neuroplastic brain changes that:
 - Cause abnormal functioning (including memory)
 - Contribute to problematic behaviors
 - Contribute to developmental delays
 - Result in child being unable to realize potential
Neglect: The **Worst** Offender

3-Year-Old Children

Normal

Extreme Neglect
Toxic Traumatic Stress & the Child’s Developing Brain

- Research reveals a *strong link* between all types of child abuse / neglect and the subsequent development of psychiatric illness in adulthood.

- Key findings (ACES) link child traumatic stress with variety of child/adult medical illness.

VJ Felitti, MD
Adverse Childhood Experiences Study (ACES)

Pyramid of Doom!

Felitti et al. 1998;
How does ACES happen?
Traumatic Stress and the Brain

Stress and the tiger
- Our bodies are designed to respond to stress
- Adrenalin and cortisol help us run from tiger or hide
- Threat of short duration
BUT... when the tiger lives in your home, neighborhood, or life...
Impact of chronic toxic stress on immune system function

- The developing Fight-Flight-Freeze system is **chronically** pressed into action:
 - Too much cortisol *suppresses immune system*, increasing risk of infection
 - Inflammatory response *persists* after it is no longer needed
Physical impact of trauma

Physical health effects on children

- Somatic perception gets impaired
 - Headache, stomachache
- Elevated cortisol impacts inflammation
 - Asthma – inflammatory component
 - Metabolic syndrome – obesity, insulin resistance, diabetes, cardiovascular disease
 - Cancer risk elevated
- Infection fighting function impaired
 - Higher risk of infection
 - Autoimmune disorders
Tracking the Physical Impact: The Telomere Story
DNA link to aging, illness, trauma

- Exciting new development
- Imprint of your life journey on your DNA
- Critical trauma link for:
 - Prenatal
 - Infants
 - Children
 - Adolescents
 - Adults (including caregivers/ professionals)
The Telomere Story
The Telomere Story

- Aging **shortens** telomeres leading to general breakdown of multiple body systems
- Trauma also shortens telomeres
- Does trauma **healing** lengthen telomeres?
- Role of **telomerase** in this dynamic process
Resiliency contextualizes a child’s/adult's strengths (individual, familial, community) against her/his adverse experiences

(Zolkoski & Bullock, 2012)
Resiliency Factors (Masten, 2014; Southwick & Charney, 2012)

- Effective caregiving and parenting quality
- Close relationships with other capable adults
- Close friends and romantic partners
- Intelligence and problem solving skills
- Self control, emotional regulation, planfulness
- Motivation to succeed
- Self Efficacy
- Faith, hope, belief that life has meaning
Do you have what it takes to be a boxing coach?
FLINT TEEN BEATS THE ODDS IN GOLDEN MEDAL PERFORMANCE

ONDON — She has a boxer's story: a troubled childhood, a brother in prison, a father who took up the sport to stay out of trouble yet couldn't watch her fight at the Olympics because of a criminal record of his own.

Clareesa Shields walked into the gym around the corner from her house in Flint, six short years ago, trying to cope with more.

The walls of the gym were ajar and the lights were dim. She stood at the door, still, and then she took a deep breath. She shouldered her bags with an air of determination.

As she stood in the corridor of an arena half a world away, beads of sweat glistened between her braids, her smile every bit as bright as the gold medal dangling from her neck. The words poured out in torrents.

"I haven't been home a lot. I know I must have a lot of publicity. I might go in history books," she began.

"People are going to look at me as an inspiration. I can be able to help my family out. And then I got a gold medal I can wear every day."

Every day?

"Probably the first year," she replied, pinching it between her fingers to be certain it was still there. "You know, there might be some days where I don't want it to be in my face and I'm just thinking I worked too hard, I really worked too hard for this medal."

She sighed, trying to catch her breath.

"I can't even explain the pain that I had went through. All the people that I had to deal with and just life — period. There were people who were telling me I couldn't do this. And whenever somebody doubted me, it always makes me push harder. So thank you — all the haters," she said defiantly.
Empathy is the foundation of relationship and relatedness.

“The ability to understand cognitively and affectively what someone else is going through.” “I can see the world from their perspective.”
What did the boxing coaches teach us about resiliency?

- Established that the youth had personal value (foundation of relatedness)
 - “I have no idea what you have been through, but I believe you can be successful.
 - “I don’t expect you to trust me. I will be honest with you. Hopefully with time you can come to believe that.”
 - “Somebody believes in me, even when I don’t there is anything worth caring about”
What did the boxing coaches teach us about resiliency?

- Believed in the youth that they could succeed (mastery/competency)
 - Experiencing success changes us
 - Motivation is dependent on being successful at some point
 - Failure is a reality for everyone. How we handle failure determines whether we are successful.
 - We are not cheerleaders, we are not naysayers, we see the potential in kids and build on that.
What did the boxing coaches teach us about resiliency?

- Help him/her to regulate with the physical controlled release of emotion (affect regulation)
 - Our kids do not have the skills of regulation. It is **not** anger management, it is emotional regulation.
 - To learn regulation it must be modeled for you
 - You must practice the skill so it can wire into the brain.
Traumatic Event/Events ➔ Resilience Factors ➔ Traumatic Impact
<table>
<thead>
<tr>
<th>Relatedness</th>
<th>Mastery</th>
<th>Affect Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good enough</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kid Profile

- Relatedness: Strong
- Mastery: Good enough
- Affect Regulation: Some
- None
Our work affects us despite what we tell ourselves?

Have you ever felt like this?
Secondary Traumatic Stress

“The natural and consequent behaviors and emotions resulting from knowing about a painful event from a significant other, the stress from helping or wanting to help a stressed person, especially a child.”

Figley, 1995; Henry, 2012
Impact of STS on Staff

<table>
<thead>
<tr>
<th>Cognitive effects</th>
<th>Social impact</th>
<th>Emotional impact</th>
<th>Physical impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative bias, pessimism</td>
<td>Reduction in collaboration</td>
<td>Helplessness</td>
<td>Headaches</td>
</tr>
<tr>
<td>All-or-nothing thinking</td>
<td>Withdrawal and loss of social support</td>
<td>Hopelessness</td>
<td>Tense muscles</td>
</tr>
<tr>
<td>Loss of perspective and critical thinking skills</td>
<td>Factionalism</td>
<td>Feeling overwhelmed</td>
<td>Stomachaches</td>
</tr>
<tr>
<td>Threat focus – see clients, peers, supervisor as enemy</td>
<td></td>
<td></td>
<td>Fatigue/sleep difficulties</td>
</tr>
<tr>
<td>Decreased self-monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>