Russian Scientists Visit Ari-Gur in New Zealand

In December, Dr. Pnina Ari-Gur, professor of Mechanical & Aeronautical Engineering, on sabbatical at the University of Auckland in New Zealand, welcomed her research collaborators from the Russian Academy of Sciences in Moscow. The scientists were Professor Vladimir Shavrov and Dr. Victor Koledov, scientists at the Institute of Radioengineering and Electronics, the Russian Academy of Sciences, Moscow. The visitors and Ari-Gur presented a seminar together on Dental Applications of Shape Memory Alloys. They also had meetings with Ari-Gur and her colleagues at Auckland, and combined scientific discussions with the beautiful views of New Zealand.

Network for Earthquake Engineering Simulation Research Funded Through National Science Foundation Grant

Dr. Xiaoyun Shao is an assistant professor of the Department of Civil and Construction Engineering and the founder of the Laboratory of Earthquake and Structural Simulation (LESS) at WMU. The major equipment in the LESS include a uni-axial seismic simulator (commonly called shake table), two 3kips hydraulic actuators with the supporting hydraulic power supply and advanced real time controller. The shake table has a dimension of 3 ft. x 3 ft. and can subject a specimen with maximum weight of 500 lbs. to an earthquake time history with a peak acceleration up to 4 g. Structural dynamic properties and its response when attacked by an earthquake will be obtained through such shake table tests. Instrumentation available in the lab consist of accelerometers and linear variable displacement transducer (LVDT) and a set of wireless sensor network. Currently there are four Master students and one undergraduate student working in the laboratory on research projects.

Dr. Shao is an assistant professor of the Department of Civil and Construction Engineering and the founder of the Laboratory of Earthquake and Structural Simulation (LESS) at WMU. The major equipment include a uni-axial seismic simulator (commonly called shake table), two 3kips hydraulic actuators with the supporting hydraulic power supply and advanced real time controller. The shake table has a dimension of 3 ft. x 3 ft. and can subject a specimen with maximum weight of 500 lbs. to an earthquake time history with a peak acceleration up to 4 g. Structural dynamic properties and its response when attacked by an earthquake will be obtained through such shake table tests. Instrumentation available in the laboratory consist of accelerometers and linear variable displacement transducer (LVDT) and a set of wireless sensor network. Currently there are four Master students and one undergraduate student working in the laboratory on research projects.

For more information please refer to the LESS webpage at http://homepages.wmich.edu/~dpb8848/index.html