Academic and Student Affairs Collaboration to Enhance Student Success in Engineering and Applied Sciences

E. Tsang, L. Darrah, P. Engelmann, C. Halderson, and D. Butt
Western Michigan University

2009 Frontiers In Education Conference • San Antonio, TX • October 19-21, 2009
Overview

• Background of WMU-CEAS
• Collaboration between Academic & Student Affairs
 ➢ Why
 ➢ How
• Preliminary Results
• Lessons Learned
Western Michigan University is a comprehensive university located in Kalamazoo, MI

Carnegie classification - doctoral research intensive

Classified as “Moderately Selective” in CSRDE

WMU Fall 2009 enrollment: 19,547 undergraduate and 5,029 graduate students

CEAS Fall 2009 enrollment: 2,091 undergraduate & 288 graduate students

CEAS offers 16 bachelor, 10 master, & five doctoral programs

Nine engineering, three engineering technology, and one computer science programs accredited by ABET
First-time first-year CEAS students come from diverse academic preparation backgrounds.

<table>
<thead>
<tr>
<th>1st Semester Math</th>
<th>2005(%)</th>
<th>2006(%)</th>
<th>2007(%)</th>
<th>2008(%)</th>
<th>2009(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus II and higher</td>
<td>9.7</td>
<td>5.4</td>
<td>5.1</td>
<td>5.2</td>
<td>8.4</td>
</tr>
<tr>
<td>Calculus I</td>
<td>31.5</td>
<td>35.3</td>
<td>42.7</td>
<td>39.2</td>
<td>34.0</td>
</tr>
<tr>
<td>Pre-Calculus</td>
<td>24.9</td>
<td>31.0</td>
<td>31.1</td>
<td>29.8</td>
<td>27.6</td>
</tr>
<tr>
<td>Algebra II</td>
<td>23.4</td>
<td>17.7</td>
<td>13.7</td>
<td>18.9</td>
<td>22.0</td>
</tr>
<tr>
<td>Algebra I and lower*</td>
<td>10.5</td>
<td>10.6</td>
<td>7.5</td>
<td>6.9</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Includes students not taking any math in 1st semester
WMU-CEAS

- Implemented learning community project in 2005 with support from NSF-STEP

<table>
<thead>
<tr>
<th>CSDRE¹</th>
<th>WMU Baseline²</th>
<th>Retention</th>
<th>2005 (262)</th>
<th>2006 (303)</th>
<th>2007 (306)</th>
<th>2008 (354)</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>60.0</td>
<td>2ⁿ Year (%)</td>
<td>68.0</td>
<td>70.1</td>
<td>66.3</td>
<td>67.5</td>
</tr>
<tr>
<td>53</td>
<td>40.6</td>
<td>3ʳ Year (%)</td>
<td>54.3</td>
<td>52.8</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>33</td>
<td>4ᵗ Year (%)</td>
<td>44.5</td>
<td>48.8⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.7³</td>
<td>32</td>
<td>5ᵗ Year (%)</td>
<td>44.6⁴</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹For all institutions, 2005-06
²Averaged 2000-2004
³37.4% graduated in a STEM field in 6 years + 3.3% continued in 7ᵗ year
⁴35.1% continued in 5ᵗ year + 9.5% graduated with CEAS degrees
⁵48.8% returned to CEAS in Year 4 + 2 graduated with CEAS degrees
Academic & Student Affairs Collaboration

• Why?
 ➢ Students spend a significant amount of time outside the classroom
 ➢ Student’s cognitive and affective development are intertwined ➢ attitudes and values strongly influence behavior of learning
 ➢ Faculty can leverage the expertise of student affairs professionals to impact student’s affective development
Academic & Student Affairs Collaboration

• Why?
 ➢ Opportunities arose in 2006 in creation of special interest housing by Residence Life
 ➢ Engineering House grew from 41 first-time first-year CEAS students in 2006 to 171 in 2009
Academic & Student Affairs Collaboration

• How?

Barriers to academic & student affairs collaboration
 ➢ Differences in background and training
 ➢ Differences in language, culture, and theoretical bases
 ➢ Habit of isolation
 ➢ Differences in organizational structure, goals, priorities
 ➢ Poor communication and lack of mutual understanding
 ➢ Rare between STEM and student affairs

Academic & Student Affairs Collaboration

• How?

The Continuum of Collaborative Process

<table>
<thead>
<tr>
<th>Informing</th>
<th>Communication</th>
<th>Cooperation</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. sent e-mail re. dates of events, changes of policies, etc.</td>
<td>face-to-face meeting to share information but lack in-depth discussion, problem solving, or joint decision making</td>
<td>share info/resources to complete task, but emphasize getting along rather than tackle difficult issues</td>
<td></td>
</tr>
</tbody>
</table>

Academic & Student Affairs Collaboration

• How?

True Collaboration involves

- Understand each other’s culture, language, and organization characteristics and philosophical and programmatic approaches
- Mutually construct the vision, goals, and processes for student development
- Identify the roles of faculty and student affairs staff; and opportunities for collaboration
- Joint planning, implementation, and accountability; share resources

Some Examples and Preliminary Results

• 2008 Pilot: Faculty Protocol to Engage Residence Life when a student missed consecutive classes
• Nine CEAS faculty members made 21 referrals involving 17 students
• A majority of CEAS faculty felt intervention led to change in student attitude
• CEAS and Residence Life reviewed pilot to assess timeliness, responsiveness, and connecting student to appropriate campus services
• Revised tracking form for 2nd implementation in Fall 2009
Some Examples and Preliminary Results

- Establish Engineering House survey procedure
- Early indicator of value-added by Engineering House: upward trend in student responses to survey

<table>
<thead>
<tr>
<th>Survey Item</th>
<th>2007 mean (n = 67)</th>
<th>2009 mean (n = 130)</th>
<th>t statistics</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The general atmosphere is open and welcome</td>
<td>3.88</td>
<td>4.29</td>
<td>3.19</td>
<td>0.002</td>
</tr>
<tr>
<td>I often study with others who live in the house</td>
<td>3.42</td>
<td>3.75</td>
<td>1.73</td>
<td>0.084</td>
</tr>
<tr>
<td>I usually prefer to study alone</td>
<td>3.76</td>
<td>3.41</td>
<td>2.14</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Scale: 1 = strongly disagree; 5 = strongly agree
Some Examples and Preliminary Results

• Embed assessment in RA programming
• RA’s submitted online retrospectives describing promotion, number in attendance, impression of program effectiveness toward objective, and recommendation for continuous improvement
• Results communicated to CEAS
CEAS Collaborate with Other Units in WMU

- Collaborate with Fall Welcome
- From communicating in 2008 to collaborating in 2009
- Two events in 2009:
 - Academic Etiquette
 - Explore CEAS
CEAS Collaborate with Other Units in WMU

- Academic Etiquette: Communication Strategies for Success
- 177 students participated to learn verbal and non-verbal communication
- Assignment: Write e-mail to introduce self to IME 1020 instructor
- Assessment:
 - 65 e-mail received by first day of class (38.4% participation)
 - 72.3% received perfect score (applied lessons learned)
 - “It helped me learn to communicate with professors.”
CEAS Collaborate with Other Units in WMU

- Explore CEAS: students given a “passport”
- Objective: become familiar with building, people, and programs
- 246 students participated
- Assessment (Scale: 1 = not at all; 5 = very much)
 - Familiar with building: 4.5
 - Faculty and staff helpful: 4.7
 - Learn out programs: 4.4
 - Find classroom and lab: 4.1
 - “I didn’t know what type of Engineering that I would like to be. The program helps me out a lot.”
 - “It got me more familiar with Parkview and its professors.”
Lessons Learned

• Relationship building takes time, effort, and patience
• CEAS has a better understanding of Residence Life, and vice versa (rhythm of semester, strengths, boundaries)
• Share and even champion other for resources
Acknowledgment

Partial support was provided by the National Science Foundation STEM Talent Expansion Program (STEP) under grant #0336581.