In order to fill the gap in aggregates savings, the challenges faced by electric utilities for the demand of lighting energy are addressed by lighting efficiency programs. The shrinking capacity and electrical grid reliability call for improved ways to evaluate energy saving programs with evaluation methods that are robust in determining the impact of lighting programs. This study employs meta-analysis as an evaluation method to determine energy savings, impact, emissions of greenhouse gases (GHG), pollutants, and health effects from lighting programs in Michigan. The findings of the study show impact in Hedges’ g of 0.36 for the overall programs. The four lighting programs differ in impacts, with energy star program having the highest impact of 0.40, Residential lighting program 0.35, and the commercial/industrial for prescriptive-custom program and compact fluorescent-light emitting diode were 0.36 and 0.32 respectively. These
programs were all cost effective as well as beneficial with respect to the investments. Other findings from the study include amount of avoided carbon dioxide, carbon dioxide equivalent, and avoided pollutants of nitrous oxide and Sulphur dioxide responsible for health effects in Michigan. Energy savings improve air quality through avoided particulate matter concentration that, in turn, lead to avoided health effects, which have economic value implications in Michigan. The study concludes that programs with more impact be given priority to gain on improved health and economic value.