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Abstract

Autonomous vehicle technology has the potential to 
improve the safety, efficiency, and cost of our current 
transportation system by removing human error. 

With sensors available today, it is possible for the development 
of these vehicles, however, there are still issues with autono-
mous vehicle operations in adverse weather conditions (e.g. 
snow-covered roads, heavy rain, fog, etc.) due to the degrada-
tion of sensor data quality and insufficiently robust software 
algorithms. Since autonomous vehicles rely entirely on sensor 
data to perceive their surrounding environment, this becomes 
a significant issue in the performance of the autonomous 
system. The purpose of this study is to collect sensor data 
under various weather conditions to understand the effects 
of weather on sensor data. The sensors used in this study were 
one camera and one LiDAR. These sensors were connected to 

an NVIDIA Drive Px2 which operated in a 2019 Kia Niro. 
Two custom scenarios (static and dynamic objects) were 
chosen to collect sensor data operating in four real-world 
weather conditions: fair, cloudy, rainy, and light snow. An 
algorithm developed herein was used to provide a method of 
quantifying the data for comparison against the other weather 
conditions. The results from these performance algorithms 
show that sensor data quality degrades by an average of 13.88% 
for static objects and 16.16% for dynamic objects while oper-
ating in these conditions, with operations in rain proving to 
have the most significant effect on sensor data degradation. 
From this study, it is hypothesized that advancements in data 
processing algorithms can improve the usability of this 
degraded data. In future work, we seek to explore fault-tolerant 
sensor fusion algorithms that can overcome the effects of 
adverse weather.

Introduction

Autonomous Vehicles (AVs) are capable of drastically 
changing the way people get to and from their desti-
nations on a global scale. These major changes will 

result in benefits to multiple demographics of society. One 
example is by providing a means of transportation for people 
with disabilities allowing them to be more independent in 
society, increasing their quality of life [1, 2]. Another impactful 
application for AVs which will shape the future of transporta-
tion are shared autonomous-vehicles (SAVs). Fagnant and 
Kockelman [3] predict that the number of vehicles on the road 
could be reduced tenfold by using SAVs. A transition to SAVs 
would have many beneficial outcomes such as, fewer cars on 
the road leading to less congestion and lower emissions, lower 
travel costs as people will share vehicles, and an increase in 
quality of life and productivity for people [4, 5].

AVs consist of a few major subsystems that work collec-
tively to achieve self-driving: perception, localization, path 
planning, vehicle control, and system management. Perception 
allows the vehicle to “see” it’s environment using sensors. The 
most common sensors are LiDAR, camera, radar, and ultra-
sonic, although there are some studies suggesting the inves-
tigation of others like ground-penetrating radar [6] and 

infrared [7]. This subsystem is essential as it is how AVs gathers 
information about their environment and it provides the input 
to the autonomous operations. Localization gives the vehicle 
a sense of where it is in the world, typically using GPS, but 
can also be done with LiDAR [8]. Without localization, AVs 
would have no sense of direction or where they are located, 
meaning it could never plan a route to follow. Path planning 
is done using the outputs of the perception and localization 
systems to determine where the vehicle should go. Vehicle 
control tells the actuators what to do in order to reach the path 
planned by controlling the steering, brake, and throttle. 
Vehicle control is typically done with a PID controller, but 
other methods (i.e. Linear Quadratic Gaussian (LQG), Model 
Predictive Control (MPC), etc.) have been investigated. The 
system management subsystem ensures safe operations by 
monitoring the functionality of all subsystems. These systems 
work together to achieve the ability for autonomous opera-
tions. A visual of this network can be seen in Figure 1.

Current AV technology lacks the ability to operate under 
certain inclement weather conditions (e.g. snow-covered 
roads, heavy rain, fog, etc.) with the same performance as 
operations in fair weather [10, 11]. The reason for the decrease 
in AV performance under these conditions is the degradation 
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of sensor data [12] via the perception system. As AVs rely 
entirely on the perception system to provide accurate data to 
the path planning and control systems, it is essential for the 
perception system to function effectively in these cases. 
Without understanding how weather affects this data, it would 
be nearly impossible to develop algorithms to process this 
data correctly for proper path planning and vehicle control [13].

The system of interest for this study is the perception 
system. This is considered the most important system since 
all other systems rely on the quality of the incoming sensor 
data to achieve precise and safe autonomous driving. Just as 
humans rely on their senses to traverse, AVs need to receive 
accurate information from their surroundings to do the same. 
This information received is the data coming from the various 
sensors. If this data gets affected by different operating condi-
tions (e.g. weather), then the vehicle has a difficult time seeing 
its environment, leading to potential failures.

Similar work has been previously done in multiple other 
studies in which weather affects on the perception system were 
studied. Zang et al. setup three scenarios in a simulation and 
analyzed received signal power and detection range for 
LiDAR, radar, and camera [14]. Rasshofer et al. conducted 
analyses of weather affects on LiDAR sensors via simulation 
[15]. Leudet et al. trained Deep Neural Networks (DNNs) 
using a simulation for operating in different weather scenarios 
[16]. These studies perform in-depth analyses on affects of 
weather on AV sensors, however these studies used either 
simulation or controlled testing environments to collect their 
data. It is important to collect data from real-world testing 
environments if AVs are to be deployed in the real-world. 
While testing in simulation and controlled environments add 
to the knowledge and provide methods of improving the 
systems, they do not suffice for real-world deployment [17]. 
One of the focuses for this study was to perform the tests 
during real-world conditions.

Inclement weather conditions within this paper are 
defined as any real-world environmental condition that poten-
tially cause unintended changes to sensor data. These condi-
tions include heavy rain, snow covered roads, heavy fog, etc. 
(see Figure 2). However, It is not just these severe weather 

conditions that take a toll on the sensor data. Operating in 
conditions like these require more focus on the perception, 
path planning, and vehicle control systems, but the focus for 
this study is the perception system. To achieve a well-rounded 
idea of how the perception system becomes affected in any 
type of operating condition (severe and/or low-intensity 
conditions), the focus of this paper is to study the low-intensity 
weather conditions. These conditions are fair, cloudy, rainy, 
and light snow. The camera images in Figure 5 show the 
different conditions in which data was gathered. The tests done 
in this paper will also be conducted in real-world scenarios 
without an enclosed, controlled environment. This is done to 
remove assumptions made about the characteristics of certain 
weather conditions.

The purpose of this study is to collect sensor data from a 
LiDAR and a camera in four real-world, low-intensity weather 
conditions: fair, cloudy, rainy, and light snow. The collected 
data was analyzed visually by comparing incorrect classifica-
tions of the NVIDIA Drivenet classification script and graphi-
cally by plotting the average number of LiDAR hit points to 
understand what the variation in the data was between each 
condition. These comparisons were then used to predict what 
techniques can be followed to develop a more robust data 
processing algorithm when operating in inclement weather 
conditions. There will be more discussion of these techniques 
in the conclusion section.

Methodology
The tests in this study were setup to collect uninfluenced, 
real-world data. There was no controlled environment or 
simulation for data collection in this study, it was desired to 
test in conditions which were not subject to a controlled envi-
ronment or simulation since AVs do not operate in these envi-
ronments. This allows for the data to be subject to practical, 
real-world, weather conditions. Additionally, these tests were 
all conducted under low-intensity conditions, so no severe 
weather data is included. This was intentional as one goal of 
this research is to begin the understanding of the affects of 
weather on the perception system with low-intensity weather 
conditions before testing in severe conditions.

 FIGURE 1  Overview of the systems involved in AV 
operations, indicating the system of interest for this study. 
Image received from [9].
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 FIGURE 2  Examples of inclement weather conditions for 
top left) snow-covered roads, (top right) fair, (bottom left) 
heavy rain, and (bottom right) heavy fog.
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Test Setup: Hardware
The hardware components used for testing include a power 
inverter, an NVIDIA Drive Px2 for computation, a 2019 
hybrid Kia Niro as the vehicle, a Sekonix NA 1262 camera, a 
Slamtec RPLIDAR A2 LiDAR, a 4ft tall dummy human (static 
test object), and a human for dynamic object testing. The 
inverter was installed onto the 12V battery of the 2019 Kia 
Niro which was used to power the NVIDIA Drive Px2 
(NDPx2) that acted as the processing unit for data collection 
(see Figure 3 for system setup). The camera use GMSL protocol 
and was plugged into the NDPx2’s GMSL camera ports. The 
LiDAR was connected through a USB to the ports of the 
NDPx2. The NDPx2 ran both the LiDAR and camera data 
collection software while storing the data in an external hard 
drive. The data was later analysed using a different desktop 
PC. Figure 3 shows the NDPx2 and inverter system installed 
in the trunk of the Kia Niro.

Two obstacles were used for testing, one static and one 
dynamic. The static obstacle was a 4ft tall human dummy, 
while the dynamic obstacle was a human walking at about 
2.5mph from left to right of the sensor setup at the same 
distance away from the sensor setup as the dummy (5ft, 10ft, 
and then 15ft). The purpose of having a static and dynamic 
obstacle is to observe if the weather affects static and dynamic 
objects differently. Driving operations contain both static and 
dynamic objects so it is critical to gather data with both objects 
in the scenario each time [18].

The camera was chosen for its compatibility with the 
NVIDIA Drive Px2 development environment. The LiDAR 
was chosen because it is supported in ROS (Robotic Operating 
System) and it is a low cost LiDAR. The software setup used 
for these sensors are discussed in more detail in the next 
section, ‘Test Setup: Software’. Important specifications of the 
camera and LiDAR can be seen in Table 1.

Test Setup: Software
Specific software was used to operate and record the sensor 
data. The NVIDIA Drive Px2’s operating system was flashed 

onto the system using the NVIDIA’s SDK manager from a 
host machine. The operating system is Ubuntu 16.04, but 
comes preloaded with example files from NVIDIA which 
allow for running various operations with a camera (object 
detection, free space detection, etc.) [19]. The NVIDIA 
Drivenet example file which ran object detection and classi-
fication algorithms was used for the camera during testing. 
The file used was the ‘sample_drivenet’ binary file located in 
the SDK. This script was written in C++ and classifies objects 
for driving (e.g. signs, people, cars, traffic lights, etc.) using 
the live camera data. Running this script instead of just 
recording video allowed for an observation of whether the 
classification algorithms become affected by these weather 
conditions. A comparison of the classification accuracy 
between the conditions was done and will be shown in the 
‘Results’ section.

The LiDAR was run by using an open source ROS 
(Robotic Operating System) driver developed by the LiDAR 
manufacturer, Slamtec, made available via GitHub [20]. This 
repository was beneficial as it provided a necessary driver to 
run the LiDAR which provided more time to be spent on the 
research instead of developing a LiDAR driver. Using ROS 
provided additional benefit as ROS’s data collection function-
ality was utilized to collect the LiDAR data which could later 
be rerun for analysis. The ROS function used for data collec-
tion and data replay is called ’rosbag’. To collect data on all 
topics (ROS’s message sending terminology) being published 
while running the LiDAR driver was ’rosbag record -a’. This 
stored all the topics into a file that was rerun on the desktop 
PC for data analysis.

Test Procedure
The tests were conducted in Kalamazoo, Michigan in October 
2019. Testing was conducted in fair, cloudy, rainy, and light 
snow weather conditions. The same testing procedure was 
followed for each condition. The sensors were placed on a cart 
at a height of 3ft. This height placement was important as it 
needed to be lower than the 4ft tall dummy so the object was 
in the same plane as the LiDAR. The Kia Niro was parked in 
the WMU MCO lab with the backend facing the garage door 
so testing could be done outdoors. This allowed for access to 
outdoor weather while keeping the sensors dry. Done for each 
weather condition, these steps were followed for data collection:

	 1.	 Place the human dummy 5ft away from the 
sensor setup.

	 2.	 Run the LiDAR and camera scripts and wait 
30 seconds.

	 3.	 Introduce dynamic obstacle, crossing the scene from 
left to right.

 FIGURE 3  Inverter and NVIDIA Drive Px2 installed in the 
trunk of the Kia Niro.
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TABLE 1 Sensor specifications.

Sensor Camera LiDAR
Name Sekonix NA 1262 Slamtec RPLIDAR A2

HFOV 120° 360°

Samples per Time 30 fps 360 scan/s

Range - 18 m©
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	 4.	 Stop the scripts. Repeat for obstacles placed at 10ft 
and 15ft.

A layout of the testing process is shown below. Two 
objects are setup in the test environment, which one is a 
human dummy (static object) and the other is a person 
walking across the sensors field of view from left to right 
(dynamic object). The object data is captured by the camera 
and LiDAR. The sensors send the sensor data to the NVIDIA 
Drive Px2. The NVIDIA Drive Px2 was running the 
NVIDIA Drivenet to overlay object detection and classifica-
tion on the camera data while also running the ROS LiDAR 
Driver to run the LiDAR while also collecting the data 
using ‘rosbag’.

Results
The LiDAR and camera data visualizations can be seen in 
Figure 5. Rviz was used for the LiDAR visualization after the 
data was collected. Rviz is a data visualization tool within 
ROS that gives the user the ability to look at either real-time 
data or data gathered in the past by replaying the bagged data 
which was collected using ‘rosbag’. Rviz works by plotting the 
LiDAR data points in which the two variables are angle and 
distance. The camera images have the NVIDIA Drivenet clas-
sification output overlay on-top of the images.

LiDAR Analysis
Quantification of the LiDAR data was needed to compare the 
data collected in different weather conditions. This was done 
by calculating the average number of hit points received from 
the static and dynamic objects. A hit point is when the LiDAR 
receives a return of a transmitted signal. These are visualized 
as the red dots seen in the LiDAR visualizations in Figure 5 
which are plotted at the hit point value (distance) with the 
angle of the LiDAR’s rotation in which the hit point occurred. 
The number of hit points was calculated by running the 
LiDAR ’rosbag’ data for each test and adding up the total 
number of hits on the static object in each single revolution 
of the LiDAR. For the static object, only the range of angles 
in which the object was placed in the view were observed (-10° 
to 10°). The use of the average of hit points from each object 
was done in order to quantify LiDAR data so a proper compar-
ison of operating in fair, cloudy, rainy, and light snow weather 

 FIGURE 4  Overview of the testing procedure showing flow 
of data.
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 FIGURE 5  Visualizations of the LiDAR (left) and Camera (right) data for (a) fair, (b) cloudy, (c) rainy, and (d) light snow 
weather conditions
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conditions can be done. The average was calculated using 
equation (1).

	 % /reduction r r rf i f= −( ) ∗100	 (1)

Equation (1) was used to calculate the percent of average 
hit reduction for the three inclement weather conditions, 
where rf is the average number of hits between each testing 
distance for the fair weather condition, r hf n

n
=

=∑ 1

3

. hn is the 
average number of hits for each testing distance, n (5ft, 10ft, 
15ft). The total average for each inclement weather condition 
ri, was calculated the same way.

The fair weather condition was used as a baseline to 
compare the effects of weather on the other three conditions. 
The percentages of average hit count reduction on the static 
object were calculated to be 12.93%, 17.1%, and 11.6% for the 
cloudy, rainy, and light snow conditions, respectively. The 
values received are interesting as it was expected for snow to 
have the highest average hit deviation from the fair weather 
conditions, however, the LiDAR actually was able to receive 
more hits in the light snow condition than any of the inclement 
weather conditions. This may be caused because the snowy 
environment in which the tests were conducted were in very 
light snow, not causing much of a deviation from the 
fair condition.

The percentages of average hit count reduction on the 
dynamic object were calculated to be 12.59%, 14.39%, and 
21.8% for the cloudy, rainy, and snowy conditions, respectively. 
In this case, the light snow condition had the most effect on 
the hit returns of the dynamic object. From Figure 7 it is clear 
that the light snow condition was effected most once the 
distance of the objects was more than 5ft. The 10ft average hit 
returns of the snow condition was about 1 hit less than the 
cloudy and rainy condition, this is the main test that led to the 
major increase in hit reduction for the snowy condition.

Camera Analysis
The camera data was analyzed by comparing the accuracy of 
the NVIDIA Drivenet classification algorithms between 
weather conditions. The accuracy in the videos from each 
condition was found by counting the number of inaccurate 
classifications through each test. These inaccurate classifica-
tions included things like classifying a light pole as a human, 

a human face as a traffic light, a wall as a car, etc. A few 
examples of inaccurate classifications can be seen in Figure 
8. Having inaccurate classifications like these while operating 
an AV can be a major flaw as it can lead to unintended vehicle 
reactions. Since the path planning system relies on the percep-
tion system to provide accurate information about the envi-
ronment to give the control system proper commands for safe 
control outputs. It is necessary to minimize classification 
errors for safe self-driving in these weather conditions so the 
vehicle does not take unsafe actions.

After reviewing the data from all four conditions, the 
total number of inaccurate classifications was found. These 
values can be seen in Table 2. It was found that fair weather 
had the least amount of inaccurate classifications while light 
snow conditions had the most. Even though fair weather had 
the least number of incorrect classifications, it still had more 
than expected for these tests, it is assumed that is from the 
testing environment not being a driving environment, so the 
DNNs (Deep Neural Networks) trained were not familiar with 
this environment, making some incorrect classifications. 

 FIGURE 6  Average hit points of the static object.
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 FIGURE 7  Average hit points of the dynamic object.
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 FIGURE 8  Examples of inaccurate classifications of the 
NVIDIA Drivenet.
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Once the camera was introduced to more inclement weather 
conditions, the ability of the classification algorithm to be as 
accurate as the fair condition was lower. The top right image 
in Figure 8 actually shows a snowflake being classified as a 
road sign, indicating that the elements of weather play a role 
in. Adding more noise to the image (in this case, snowflakes) 
gives more room for error in the classification algorithm. Since 
it is unknown how the DNN model was trained for the 
NVIDIA Drivenet, it cannot be known how improvements 
can be made to this system directly, but it can be assumed that 
training the DNNs in more adverse weather conditions, it 
should have less error.

Conclusion & Discussion
This study shows that data becomes affected while operating 
in inclement weather conditions. While these weather condi-
tions are not severe, there is sensor data degradation of 13.88% 
for the static object and 16.16% for the dynamic object, aver-
aging to a total decrease of 15.07% in the average hit count for 
LiDAR data. Additionally, an overall increase of inaccurate 
classifications of camera data running the NVIDIA Drivenet 
classification tool were observed.

Methods to improve the usage of the LiDAR data would 
be to implement more robust data processing techniques or 
more robust sensor fusion algorithms. Since the LiDAR 
returns were still received for each condition, the data is not 
completely degraded. Further data processing techniques can 
be used to increase the data quality such as filtering static 
objects and dynamic objects into separate categories, using 
DNNs for object classification of LiDAR data, object tracking, 
etc. By applying these techniques in fault-tolerant sensor 
fusion algorithms, proper object detection and classification 
will be achieved to provide accurate information about the 
vehicle environment to provide the path planning system high 
quality data.

For the camera classification improvements, it is needed 
to either develop a different classification tool which will 
be more robust in different operating conditions, or conduct 
additional training of the classification tool to lower the incor-
rect classifications in these different weather conditions. A 
new tool can be  developed based on NVIDIA Drivenet’s 
trained models, or investigation of different Convolution 
Neural Network architectures can be done to choose the best 
type of DNN architecture for AV applications which would 
involve development.

For future work, there will be additional data collection 
done in more severe weather conditions utilizing higher 
performing LiDARs, additional cameras for a 360° FOV 

around the vehicle, and inclusion of radar sensors. It is desired 
to use a vehicle with this sensor suite to drive in city and 
highway settings for diverse drive-cycle data collection. One 
of the main goals of this series of researches is to collect data 
in real-world scenarios, hence, various drive-cycles and varia-
tions of weather conditions. Additionally, more research is to 
be done on different sensor fusion algorithms to detect objects 
using this data in adverse weather.

References
	 1.	 Bühler, C., Hoelper, R., Hoyer, H., and Humann, W., 

“Autonomous Robot Technology for Advanced Wheelchair 
and Robotic Aids for People with Disabilities,” Rob. Auton. 
Syst. 14(2):213-222, May 1995.

	 2.	 Harper, C.D., Hendrickson, C.T., Mangones, S., and 
Samaras, C., “Estimating Potential Increases in Travel with 
Autonomous Vehicles for the Non-Driving, Elderly and 
People with Travel-Restrictive Medical Conditions,” Transp. 
Res. Part C: Emerg. Technol. 72:1-9, Nov. 2016.

	 3.	 Fagnant, D.J. and Kockelman, K.M., “The Travel and 
Environmental Implications of Shared Autonomous 
Vehicles, Using Agent-Based Model Scenarios,” Transp. Res. 
Part C: Emerg. Technol. 40:1-13, Mar. 2014.

	 4.	 Greenblatt, J.B. and Saxena, S., “Autonomous Taxis could 
Greatly Reduce Greenhouse-Gas Emissions of US Light-
Duty Vehicles,” Nat. Clim. Chang. 5:860, Jul. 2015.

	 5.	 Greenblatt, J.B. and Shaheen, S., “Automated Vehicles, On-
Demand Mobility, and Environmental Impacts,” Current 
Sustainable/Renewable Energy Reports 2(3):74-81, Sep. 2015.

	 6.	 Cornick, M., Koechling, J., Stanley, B., and Zhang, B., 
“Localizing Ground Penetrating RADAR: A Step toward 
Robust Autonomous Ground Vehicle Localization,” J. Field 
Robotics 33(1):82-102, Jan. 2016.

	 7.	 Behringer, R., Sundareswaran, S., Gregory, B., Elsley, R., 
Addison, B., Guthmiller, W., Daily, R., and Bevly, D., “The 
DARPA Grand Challenge - Development of an Autonomous 
Vehicle,” in IEEE Intelligent Vehicles Symposium, 2004, 226-
231.

	 8.	 Wolcott, R.W. and Eustice, R.M., “Robust LIDAR 
Localization Using Multiresolution Gaussian Mixture Maps 
for Autonomous Driving,” Int. J. Rob. Res. 36(3):292-319, 
Mar. 2017.

	 9.	 Jo, K., Kim, J., Kim, D., Jang, C., and Sunwoo, M., 
“Development of Autonomous Car - Part i: Distributed 
System Architecture and Development Process,” IEEE Trans. 
Ind. Electron. 61(12):7131-7140, Dec. 2014.

	10.	 Page, M., “Top Misconceptions of Autonomous cars and 
Self-Driving Vehicles,” 2016.

	11.	 Lee, U., Jung, J., Shin, S., Jeong, Y., Park, K., Shim, D.H., and 
Kweon, I., “EureCar Turbo: A Self-Driving Car That can 
Handle Adverse Weather Conditions,” in 2016 IEEE/RSJ 
International Conference on Intelligent Robots and Systems 
(IROS), Oct. 2016, 2301-2306.

	12.	 Kutila, M., Pyykönen, P., Ritter, W., Sawade, O., and 
Schäufele, B., “Automotive LIDAR Sensor Development 
Scenarios for Harsh Weather Conditions,” in 2016 IEEE 19th 

TABLE 2 Inaccurate classifications for each condition.

Condition No. of Inaccurate Classifications
Fair 6

Cloudy 7

Rainy 8

Light Snow 9 ©
 S

A
E 

In
te

rn
at

io
na

l.

Downloaded from SAE International by Zachary Asher, Wednesday, April 15, 2020



© 2020 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies 
solely with the author(s).

ISSN 0148-7191

	 7ANALYSIS OF LIDAR AND CAMERA DATA IN REAL-WORLD WEATHER CONDITIONS

International Conference on Intelligent Transportation 
Systems (ITSC), Nov. 2016, 265-270.

	13.	 Peynot, T., Underwood, J., and Scheding, S., “Towards 
Reliable Perception for Unmanned Ground Vehicles in 
Challenging Conditions,” in 2009 IEEE/RSJ International 
Conference on Intelligent Robots and Systems, Oct. 2009, 
1170-1176.

	14.	 Zang, S., Ding, M., Smith, D., Tyler, P. et al., “The Impact of 
Adverse Weather Conditions on Autonomous Vehicles: How 
Rain, Snow, Fog, and Hail Affect the Performance of a Self-
Driving Car,” IEEE Veh. Technol. Mag. 14(2):103-111, 
Jun. 2019.

	15.	 Rasshofer, R.H., Spies, M., and Spies, H., “Influences of 
Weather Phenomena on Automotive Laser Radar Systems,” 
Advances in Radio Science 9(B. 2):49-60, 2011.

	16.	 Leudet, J., Mikkonen, T., Christophe, F. et al., “Virtual 
Environment for Training Autonomous Vehicles,” in Annu. 
Conf. Res. Med. Educ, 2018.

	17.	 Cheng, G., Zheng, J.Y., and Murase, H., “Sparse Coding of 
Weather and Illuminations for ADAS and Autonomous 
Driving,” 2018 IEEE Intelligent Vehicles Symposium (IV), Jun. 
2018, 2030-2035.

	18.	 Radecki, P., Campbell, M., and Matzen, K., “All Weather 
Perception: Joint Data Association, Tracking, and 
Classification for Autonomous Ground Vehicles,” May 2016.

	19.	 Smith, R., “NVIDIA Announces DRIVE PX 2 - Pascal Power 
for Self-Driving Cars,” https://www.anandtech.com/
show/9903/nvidia-announces-drive-px-2-pascal-power-for-
selfdriving-cars, Jan. 2016.

	20.	 “rplidar_ros,” https://github.com/Slamtec/rplidar_ros.

Contact Information
Nick Goberville
Mechanical & Aerospace Engineering Dept.
1903 W Michigan Ave.
Kalamazoo, MI 49008-5314 USA
nicholas.a.goberville@wmich.edu

Dr. Zach Asher
Mechanical & Aerospace Engineering Dept.
1903 W Michigan Ave.
Kalamazoo, MI 49008-5314 USA
zach.asher@wmich.edu

Acknowledgments
I want to thank the WMU Technology Development Fund for 
providing the opportunity for this research to be conducted.

Definitions/Abbreviations
AV - Autonomous Vehicle
DNN - Deep Neural Network
LiDAR - Light Detection and Ranging
HFOV - Horizontal Field of View
FOV - Field of View
FPS - Frames Per Second
SAV - Shared Autonomous Vehicle
NDPx2 - NVIDIA Drive Px2
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