WMU Design Guidelines Instructions: These guidelines are to be used by the Design Professional to inform the design process and outline WMU-specific desires for University projects. Text appearing in blue indicates a WMU design guideline which must be met for all campus projects unless approved in writing by the University. Blue text that is struck out indicates products or practices that are not acceptable, and shall not be included unless similarly approved. Any text remaining in black is to be edited by the Design Professional as part of the normal specifications-writing process. Guidelines language shall be included in the project specifications and their intent incorporated into the drawings.

SECTION 32 1313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes Concrete Paving [.] [Including the Following:]

1. Driveways.
2. Roadways.
3. Parking lots.
4. Curbs and gutters.
5. Walks.

B. Related Requirements:

1. [Section 03 3000 "Cast-in-Place Concrete"] [Section 03 3053 "Miscellaneous Cast-in-Place Concrete"] for general building applications of concrete.
2. Section 32 1316 "Decorative Concrete Paving" for stamped concrete other than stamped detectable warnings.
3. Section 32 1373 "Concrete Paving Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.
4. Section 32 1713 "Parking Bumpers."
5. Section 32 1723 "Pavement Markings."
6. Section 32 1726 "Tactile Warning Surfacing" for detectable warning [tiles] [mats] [and] [pavers].
7. Section 32 1729 "Manufactured Traffic-Calming Devices."

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash, slag cement, and other pozzolans.

B. W/C Ratio: The ratio by weight of water to cementitious materials.
1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at [Project site] <Insert location>.

1. Review methods and procedures related to concrete paving, including but not limited to, the following:
 a. Concrete mixture design.
 b. Quality control of concrete materials and concrete paving construction practices.
 c. <Insert agenda item>.

2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete paving Subcontractor.
 e. Manufacturer's representative of stamped concrete paving system used for stamped detectable warnings.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

DESIGNER NOTE: For projects seeking LEED certification, include sustainable design submittals as required.

B. Sustainable Design Submittals:

1. <Double click to insert sustainable design text for recycled content.>
2. <Double click to insert sustainable design text for regional materials.>
3. <Double click to insert sustainable design text for solar reflectance.>

C. Samples for Initial Selection: For each type of product, ingredient, or admixture requiring color selection.

D. Samples for Verification: For each type of product or exposed finish, prepared as Samples of size indicated below:

1. Exposed Aggregate: [10-lb] <Insert weight> Sample of each mix.

E. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified [Installer of stamped detectable warnings] [ready-mix concrete manufacturer] [and] [testing agency].
B. Material Certificates: For the following, from manufacturer:

1. Cementitious materials.
2. Steel reinforcement and reinforcement accessories.
3. Fiber reinforcement.
4. Admixtures.
5. Curing compounds.
7. Bonding agent or epoxy adhesive.
8. Joint fillers.

C. Material Test Reports: For each of the following:

1. Aggregates: Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.

D. Field quality-control reports.

1.7 QUALITY ASSURANCE

A. Stamped Detectable Warning Installer Qualifications: An employer of workers trained and approved by manufacturer of stamped concrete paving systems.

B. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").

C. Testing Agency Qualifications: Qualified according to ASTM C1077 and ASTM E329 for testing indicated.

1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.

D. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

1. Build mockups of full-thickness sections of concrete paving to demonstrate typical joints; surface finish, texture, and color; curing; and standard of workmanship.
2. Build mockups of concrete paving in the location and of the size indicated or, if not indicated, build mockups where directed by Architect and not less than [96 inches by 96 inches] [Insert dimensions]. [Include full-size detectable warning.]
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
1.8 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified independent testing agency to perform preconstruction testing on concrete paving mixtures.

1.9 FIELD CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

B. Cold-Weather Concrete Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:

1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
2. Do not use frozen materials or materials containing ice or snow.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved products in design mixtures.

C. Hot-Weather Concrete Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Cover steel reinforcement with water-soaked burlap, so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless otherwise indicated.

2.2 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.

1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less.[Do not use notched and bent forms.]
B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.3 STEEL REINFORCEMENT

DESIGNER NOTE: WMU prefers fiber reinforcement as outlined in paragraph 2.5 over steel. This should be discussed with WMU during the design phases of the project.

A. [Double click to insert sustainable design text for recycled content of steel products.]

B. Plain-Steel Welded-Wire Reinforcement: ASTM A1064/A1064M, fabricated from [as-drawn] [galvanized]-steel wire into flat sheets.

E. Reinforcing Bars: ASTM A615/A615M, Grade 60; deformed.

F. Galvanized Reinforcing Bars: ASTM A767/A767M, Class II zinc coated, hot-dip galvanized after fabrication and bending; with ASTM A615/A615M, Grade 60 deformed bars.

G. Epoxy-Coated Reinforcing Bars: ASTM A775/A775M or ASTM A934/A934M; with ASTM A615/A615M, Grade 60 deformed bars.

H. Steel Bar Mats: ASTM A184/A184M; with ASTM A615/A615M, Grade 60 deformed bars; assembled with clips.

I. Plain-Steel Wire: ASTM A1064/A1064M, [as drawn] [galvanized].

J. Deformed-Steel Wire: ASTM A1064/A1064M.

K. Epoxy-Coated-Steel Wire: ASTM A884/A884M, Class A; coated, [plain] [deformed].

L. Joint Dowel Bars: ASTM A615/A615M, Grade 60 plain-steel bars; zinc coated (galvanized) after fabrication according to ASTM A767/A767M, Class I coating. Cut bars true to length with ends square and free of burrs.

M. Epoxy-Coated, Joint Dowel Bars: ASTM A775/A775M; with ASTM A615/A615M, Grade 60 plain-steel bars.

N. Tie Bars: ASTM A615/A615M, Grade 60; deformed.

O. Hook Bolts: ASTM A307, Grade A, internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.

P. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded-wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.

Q. Epoxy Repair Coating: Liquid, two-part, epoxy repair coating, compatible with epoxy coating on reinforcement.

R. Zinc Repair Material: ASTM A780/A780M.

2.4 CONCRETE MATERIALS

A. <Double click to insert sustainable design text for regional materials (concrete).>

B. Cementitious Materials: Use the following cementitious materials, of same type, brand, and source throughout Project:

1. Portland Cement: ASTM C150/C150M, [gray] [white] portland cement [Type I] [Type II] [Type III] [Type IV] [Type V].
2. Fly Ash: ASTM C618, [Class C] [or] [Class F].
3. Slag Cement: ASTM C989/C989M, Grade 100 or 120.
4. Blended Hydraulic Cement: ASTM C595/C595M, [Type IS, portland blast-furnace slag] [Type IP, portland-pozzolan] [Type IL, Portland-limestone] [Type IT, ternary blended] cement.

C. Normal-Weight Aggregates: ASTM C33/C33M, [Class 4S] [Class 4M] [Class 1N] [Insert class], uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials.

1. Maximum Coarse-Aggregate Size: [1-1/2 inches] [1 inch] [3/4 inch] nominal.
2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

D. Exposed Aggregate: Selected, hard, and durable; washed; free of materials with deleterious reactivity to cement or that cause staining; from a single source, with gap-graded coarse aggregate as follows:

1. Aggregate Sizes: [3/4 to 1 inch] [1/2 to 3/4 inch] [3/8 to 5/8 inch] [Insert dimensions] nominal.
2. Aggregate Source, Shape, and Color: [Insert requirements].

E. Air-Entraining Admixture: ASTM C260/C260M.

F. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.

1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
2. Retarding Admixture: ASTM C494/C494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.

G. Color Pigment: ASTM C979/C979M, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, [free of carbon black], nonfading, and resistant to lime and other alkalis.

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

2. Color: [As indicated by manufacturer's designation] [Match Architect's sample] [As selected by Architect from manufacturer's full range] <Insert color>.

H. Water: Potable and complying with ASTM C94/C94M.

2.5 FIBER REINFORCEMENT

DESIGNER NOTE: This is WMU’s preferred material for reinforcement over steel.

A. Synthetic Fiber: Monofilament polypropylene fibers engineered and designed for use in decorative concrete paving, complying with ASTM C1116/C1116M, Type III, [1/2 to 1-1/2 inches] <Insert dimensions> long.

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

B. Synthetic Fiber: Fibrillated polypropylene fibers engineered and designed for use in decorative concrete paving, complying with ASTM C1116/C1116M, Type III, [1/2 to 1-1/2 inches] <Insert dimensions> long.

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

2.6 CURING MATERIALS

DESIGNER NOTE: WMU prefers that absorptive covers not be used for exterior conditions, as it is labor intensive and tends to drive up the cost.

A. Absorptive Cover: AASHTO M 182, [Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry] [or] [cotton mats].

B. Moisture-Retaining Cover: ASTM C171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C309, Type 1, Class B, dissipating.

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
WMU Design Guidelines

DESIGNER NOTE: WMU prefers the white, waterborne, membrane-forming curing compound outlined in 2.6.F.

F. White, Waterborne, Membrane-Forming Curing Compound: ASTM C309, Type 2, Class B, dissipated.
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

2.7 RELATED MATERIALS

DESIGNER NOTE: WMU prefers pre-formed asphalt-saturated cellulosic fiber for joint filler.

A. Joint Fillers: [ASTM D1751, asphalt-saturated cellulosic fiber] [or] [ASTM D1752, cork or self-expanding cork] in preformed strips.

B. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.

C. Bonding Agent: ASTM C1059/C1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

D. Epoxy-Bonding Adhesive: ASTM C881/C881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:
 1. [Types I and II, nonload bearing] [Types IV and V, load bearing], for bonding hardened or freshly mixed concrete to hardened concrete.

E. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

F. Pigmented Mineral Dry-Shake Hardener: Factory-packaged, dry combination of portland cement, graded quartz aggregate, color pigments, and plasticizing admixture. Use color pigments that are finely ground, nonfading mineral oxides interground with cement.
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Color: [As indicated by manufacturer's designation] [Match Architect's sample] [As selected by Architect from manufacturer's full range] <Insert color>.

G. Rock Salt: Sodium chloride crystals, kiln dried, coarse gradation with 100 percent passing 3/8-inch sieve and 85 percent retained on a No. 8 sieve.

2.8 STAMPED DETECTABLE WARNING MATERIALS

DESIGNER NOTE: WMU desires cast iron detectable warning plates. Revise section as required.
A. Detectable Warning Stamp: Semirigid polyurethane mats with formed underside capable of imprinting detectable warning pattern on plastic concrete; perforated with a vent hole at each dome.

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Size of Stamp: One piece, [matching detectable warning area shown on Drawings] [24 by 24 inches] [24 by 36 inches] [24 by 48 inches] [26 by 26 inches] [26 by 36 inches] <Insert dimensions>.

B. Liquid Release Agent: Manufacturer's standard, clear, evaporating formulation designed to facilitate release of stamp mats.

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

2.9 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.

1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that comply with or exceed requirements.

B. Cementitious Materials:[Use fly ash, pozzolan, slag cement, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.][Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:]

1. Fly Ash or Pozzolan: 25 percent.
2. Slag Cement: 50 percent.
3. Combined Fly Ash or Pozzolan, and Slag Cement: 50 percent, with fly ash or pozzolan not exceeding 25 percent.

C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:

1. Air Content: [5-1/2] [4-1/2] [2-1/2] percent plus or minus 1-1/2 percent for 1-1/2-inch nominal maximum aggregate size.
2. Air Content: [6] [4-1/2] [3] percent plus or minus 1-1/2 percent for 1-inch nominal maximum aggregate size.
3. Air Content: [6] [5] [3-1/2] percent plus or minus 1-1/2 percent for 3/4-inch nominal maximum aggregate size.

D. Limit water-soluble, chloride-ion content in hardened concrete to [0.15] [0.30] percent by weight of cement.

E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
1. Use [water-reducing admixture] [high-range, water-reducing admixture] [high-range, water-reducing and retarding admixture] [plasticizing and retarding admixture] in concrete as required for placement and workability.

2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

F. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than [1.0 lb/cu. yd.] [1.5 lb/cu. yd.] <Insert requirement>.

G. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

H. Concrete Mixtures: Normal-weight concrete.

1. Compressive Strength (28 Days): [4500 psi] [4000 psi] [3500 psi] [3000 psi] <Insert strength>.

2. Maximum W/C Ratio at Point of Placement: [0.45] [0.50] <Insert ratio>.

3. Slump Limit: [4 inches] [5 inches] [8 inches] <Insert dimension>, plus or minus 1 inch.

4. <Double click to insert sustainable design text for solar reflectance.>

2.10 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C94M and ASTM C1116/C1116M. Furnish batch certificates for each batch discharged and used in the Work.

1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C94M. Mix concrete materials in appropriate drum-type batch machine mixer.

1. For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.

2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd..

3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
B. Proof-roll prepared subbase surface below [concrete paving] <Insert locations> to identify soft pockets and areas of excess yielding.

1. Completely proof-roll subbase in one direction [and repeat in perpendicular direction]. Limit vehicle speed to 3 mph.

DESIGNER NOTE: Proof-rolling method should be determined based on scope of work. Designer should update method or allow methodology to be determined in the field with the contractor and testing agent.

2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons.

3. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of [1/2 inch] <Insert dimension> according to requirements in Section 31 2000 "Earth Moving."

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT INSTALLATION

A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

D. Install welded-wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

E. Zinc-Coated Reinforcement: Use galvanized-steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material.

F. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D3963/D3963M.
G. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch overlap of adjacent mats.

3.5 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.

1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.

1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
2. Provide tie bars at sides of paving strips where indicated.
3. Butt Joints: Use [bonding agent] [epoxy-bonding adhesive] at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.

1. Locate expansion joints at intervals of [50 feet] <Insert dimension> unless otherwise indicated.
2. Extend joint fillers full width and depth of joint.
3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows[<to match jointing of existing adjacent concrete paving>]:

DESIGNER NOTE: WMU prefers sawed joints over grooved.

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a [1/4-inch] [3/8-inch] radius. Repeat grooving of
contraction joints after applying surface finishes.[Eliminate grooving-tool marks on concrete surfaces.]

a. Tolerance: Ensure that grooved joints are within [3 inches] <Insert dimension> either way from centers of dowels.

2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.

a. Tolerance: Ensure that sawed joints are within [3 inches] <Insert dimension> either way from centers of dowels.

3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

3.6 CONCRETE PLACEMENT

DESIGNER NOTE: WMU prefers 6-inch depth for slab-on-grade construction of sidewalks, with 4 inches of 95% compacted subgrade of 22A or 21AA MDOT road gravel if vehicular traffic is expected.

A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.

B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.

E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.
H. Screed paving surface with a straightedge and strike off.

I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

J. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.

K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.

 1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.

3.7 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

 1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.
 3. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch deep with a stiff-bristled broom, perpendicular to line of traffic.

3.8 SPECIAL FINISHES

A. Monolithic Exposed-Aggregate Finish: Expose coarse aggregate in paving surface as follows:

 1. Immediately after float finishing, spray-apply chemical surface retarder to paving according to manufacturer's written instructions.
 2. Cover paving surface with plastic sheeting, sealing laps with tape, and remove when ready to continue finishing operations.
 3. Without dislodging aggregate, remove mortar concealing the aggregate by lightly brushing surface with a stiff, nylon-bristle broom. Do not expose more than one-third of the average diameter of the aggregate and not more than one-half of the diameter of the smallest aggregate.
 4. Fine-spray surface with water and brush. Repeat cycle of water flushing and brushing until cement film is removed from aggregate surfaces to depth required.

B. Seeded Exposed-Aggregate Finish: Immediately after initial floating, spread a single layer of aggregate uniformly on paving surface. Tamp aggregate into plastic concrete and float finish to entirely embed aggregate with mortar cover of 1/16 inch.
1. Spray-apply chemical surface retarder to paving according to manufacturer's written instructions.
2. Cover paving surface with plastic sheeting, sealing laps with tape, and remove sheeting when ready to continue finishing operations.
3. Without dislodging aggregate, remove mortar concealing the aggregate by lightly brushing surface with a stiff, nylon-bristle broom. Do not expose more than one-third of the average diameter of the aggregate and not more than one-half of the diameter of the smallest aggregate.
4. Fine-spray surface with water and brush. Repeat cycle of water flushing and brushing until cement film is removed from aggregate surfaces to depth required.

C. Slip-Resistive Aggregate Finish: Before final floating, spread slip-resistive aggregate finish on paving surface according to manufacturer's written instructions and as follows:

1. Uniformly spread [25 lb/100 sq. ft.] [40 lb/100 sq. ft.] [60 lb/100 sq. ft.] <Insert rate of application> of dampened, slip-resistant aggregate over paving surface in two applications. Tamp aggregate flush with surface using a steel trowel, but do not force below surface.
2. Uniformly distribute approximately two-thirds of slip-resistant aggregate over paving surface with mechanical spreader, allow to absorb moisture, and embed by power floating. Follow power floating with a second slip-resistant aggregate application, uniformly distributing remainder of material at right angles to first application to ensure uniform coverage, and embed by power floating.
3. Cure concrete with curing compound recommended by slip-resistant aggregate manufacturer. Apply curing compound immediately after final finishing.
4. After curing, lightly work surface with a steel-wire brush or abrasive stone and water to expose nonslip aggregate.

D. Rock-Salt Finish: After initial [floating] [troweling] [brooming], uniformly spread rock salt over paving surface at the rate of 5 lb/100 sq. ft..

1. Embed rock salt into plastic concrete with [roller] [or] [magnesium float] <Insert tool>.
2. Cover paving surface with 1-mil-thick polyethylene sheet and remove sheet when concrete has hardened and seven-day curing period has elapsed.
3. After seven-day curing period, saturate concrete with water and broom-sweep surface to dissolve remaining rock salt, thereby leaving pits and holes.

E. Pigmented Mineral Dry-Shake Hardener Finish: After initial floating, apply dry-shake materials to paving surface according to manufacturer's written instructions and as follows:

1. Uniformly spread dry-shake hardener at a rate of [100 lb/100 sq. ft.] <Insert rate of application> unless greater amount is recommended by manufacturer to match paving color required.
2. Uniformly distribute approximately two-thirds of dry-shake hardener over the concrete surface with mechanical spreader; allow hardener to absorb moisture and embed it by power floating. Follow power floating with a second application of pigmented mineral dry-shake hardener, uniformly distributing remainder of material at right angles to first application to ensure uniform color, and embed hardener by final power floating.
3. After final power floating, apply a hand-troweled finish followed by a broom finish.
4. Cure concrete with curing compound recommended by dry-shake hardener manufacturer. Apply curing compound immediately after final finishing.
3.9 DETECTABLE WARNING INSTALLATION

DESIGNER NOTE: Revise installation method to coincide with cast iron warning plates.

A. Blockouts: Form blockouts in concrete for installation of detectable paving units specified in Section 32 1726 "Tactile Warning Surfacing."
 1. Tolerance for Opening Size: [Plus 1/4 inch, no minus] <Insert requirement>.

B. Cast-in-Place Detectable Warning Tiles: Form blockouts in concrete for installation of tiles specified in Section 32 1726 "Tactile Warning Surfacing." Screed surface of concrete where tiles are to be installed to elevation, so that edges of installed tiles will be flush with surrounding concrete paving. Embed tiles in fresh concrete to comply with Section 32 1726 "Tactile Warning Surfacing" immediately after screeding concrete surface.

C. Stamped Detectable Warnings: Install stamped detectable warnings as part of a continuous concrete paving placement and according to stamp-mat manufacturer's written instructions.
 1. Before using stamp mats, verify that the vent holes are unobstructed.
 2. Apply liquid release agent to the concrete surface and the stamp mat.
 3. Stamping: [While initially finished concrete is plastic] [After application and final floating of pigmented mineral dry-shake hardener], accurately align and place stamp mats in sequence. Uniformly load, gently vibrate, and press mats into concrete to produce imprint pattern on concrete surface. Load and tamp mats directly perpendicular to the stamp-mat surface to prevent distortion in shape of domes. Press and tamp until mortar begins to come through all of the vent holes. Gently remove stamp mats.
 4. Trimming: After [24] <Insert number> hours, cut off the tips of mortar formed by the vent holes.
 5. Remove residual release agent according to manufacturer's written instructions, but no fewer than three days after stamping concrete. High-pressure-wash surface and joint patterns, taking care not to damage stamped concrete. Control, collect, and legally dispose of runoff.

3.10 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by [moisture curing] [moisture-retaining-cover curing] [curing compound] [or] [a combination of these] as follows:
DESIGNER NOTE: WMU prefers curing compound as outlined in E.1.3 due to cost effectiveness over moisture curing or a moisture-retaining-cover curing.

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period, using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer’s written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.11 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 and as follows:

1. Elevation: 3/4 inch.
3. Surface: Gap below 10-feet-long; unleveled straightedge not to exceed 1/2 inch.
4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
5. Lateral Alignment and Spacing of Dowels: 1 inch.
7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
8. Joint Spacing: 3 inches.

3.12 FIELD QUALITY CONTROL

A. Testing Agency: [Owner will engage] [Engage] a qualified testing agency to perform tests and inspections.

B. Testing Services: Testing and inspecting of composite samples of fresh concrete obtained according to ASTM C172/C172M shall be performed according to the following requirements:

1. Testing Frequency: Obtain at least one composite sample for each [100 cu. yd.] [5000 sq. ft.] or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
2. Slump: ASTM C143/C143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

3. Air Content: ASTM C231/C231M, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

4. Concrete Temperature: ASTM C1064/C1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite sample.

5. Compression Test Specimens: ASTM C31/C31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.

DESIGNER NOTE: WMU would also like to see one specimen tested at 14 days. A single specimen at 28 days is acceptable over two.

6. Compressive-Strength Tests: ASTM C39/C39M; test one specimen at seven days and two specimens at 28 days.

 a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.

C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.

G. Concrete paving will be considered defective if it does not pass tests and inspections.

H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

I. Prepare test and inspection reports.

3.13 REPAIR AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.

C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 32 1313