Working Together to Reduce the Impact of Trauma in Young Children

Creative Collaboration and the neurodevelopmental / neurobehavioral impact of traumatic stress

25 August 2011
Jim Henry, PhD, MSW
Mark A. Sloane, DO
Ben Atchison, PhD, OTR

WMU Children’s Trauma Assessment Center
Kalamazoo, MI
Role of Stress in Child Development
Classifying Stress

Positive Stress

- Moderate / brief exposures
- Important / necessary for healthy development
Classifying Stress

Tolerable Stress

- Significant (and often severe) stress exposure
- Potentially damaging
- Buffeted by supportive adult relationships
Classifying Stress

Toxic Stress

- Strong, frequent, prolonged exposure
- No (or inadequate) adult buffering & support
Prolonged Toxic Stress: Can Lead to Ill Health

• Via interaction between multiple components:
 – Behavioral
 – Cognitive
 – Physiological
 – Neural
Coping Responses to Stress
The Two-edged Sword

• Coping responses influence both:

 – the *risk* for worsening and...
 – the *resilience* against ill health
Brain as both mediator & target of chronic toxic stress

- Brain determines what is threatening
- Brain regulates behavioral and physiological responses to stress
- Brain directs final outcomes of toxic stress:
 - Resilience (+/- intervention) → normal balance
 - Downward spiral to ill mental / physical health

McEwen 2010
Socio-economic challenges influence developmental toxic stress

- Early maltreatment
- Conflict in family relationships
- Stressful life events
- Adverse physical / social conditions

McEwen 2010
Chronic Developmental Toxic Stress Influences Neuroplasticity

- **Structure & function** of the brain are changed
 - Amygdala
 - Hippocampus
 - Prefrontal cortex

- Neuroplasticity in turn influences:
 - Emotional regulation / expression
 - Stress reactivity
 - Stress recovery
 - Coping
 - Premature aging?

McEwen 2010
Hippocampus & Amygdala
Prefrontal Cortex
Toxic Stress does not automatically equal permanent damage

• **Recovery** depends on:

 – Resilience

 – Preventive strategies / effective social policy

 – Intervention strategies:

 • Medication

 • Psychotherapies

 • Physiological therapies (OT, Music Therapy, Somatic Therapy)

 • Life-style factors (exercise, dietary changes, social supports)
Social policies = top-down interventions

- Public & private child welfare policies have direct impact on the brain
 - Resiliency
 - Neuroplasticity

McEwen 2010
Systems-change really does change the brain!
Get ready for Science class!!
Building the brain
From simple to complex:
Hierarchy of brain function

Neocortex
Limbic
Diencephalon
Brainstem

Abstract Thought
Concrete Thought
Executive Function
Attachment
Sexual Behavior
Emotion Generation
Motor Regulation
Motivation
Arousal
Sleep
BP / Heart Rate
Respiratory Drive
Body Temperature

All sensory input enters here

Perry 2006
Rebuilding the Brain

Neural systems can be changed / treated but some systems are easier to change.

Complexity

Neocortex

Limbic

Diencephalon

Brainstem

Plasticity & Ease of change
Driving Miss-Behavior
Vehicle-Brain Metaphor

- Accelerator
- Brakes
- Steering
Floorin’ it: 0 to 60 in 4.3 seconds!

Importance of the accelerator
Accelerator: key “contributors”

- **Generating** Brain Energy (“RPM” of the brain)
- Risk-taking behavior
- Anxiety / Panic
- Anger / Explosiveness
- Mania / Hypomania
Arousal Genesis / Regulation

Way too wound-up / “wild” (“Tigger - on crack”)

Too wound-up (Tigger)

Optimal “Goldilocks” Arousal

Bored / Low energy / Tired & sleepy (Ee-yore)

Total shut-down (via parasympathetics) “Ee-yore on Quaaludes”
Optimal arousal necessary to best regulate / manage / experience emotions

(Novel methods of arousal monitoring in the lab)
Affect Tolerance:
Expanding the comfort zone

Ogden 2009
The Anxious World of Piglet

Fight-Flight-Freeze is in the breeze

“It’s not easy being brave when you’re only a Very Small Animal”
The Confusing Picture of Anxiety

Fight-Flight-Freeze

- Anxiety / Panic as source for reactive anger ➔ aggression
- Anxiety – Attention – Language interplay in kids with aggression
Anger / Explosiveness:
Critical Link to Reactive Aggression

- Many faces of anger
- Anger as coping skill
- (“Just anger” as clinical progress!)
- Aggression = Anger \textit{plus} “bad” brakes
The Prefrontal Cortex:
The home of Executive Function

Executive Function:
The "brakes" of the brain

- Working memory / memory recall
- Focusing (locking, shifting & sustaining)
- Planning / organizing
- Self-monitoring of behavior/action
 - Impulse control
- Regulation

\[
\text{Executive Function:}\quad \text{The "brakes" of the brain} \\
\text{- Working memory / memory recall} \\
\text{- Focusing (locking, shifting & sustaining)} \\
\text{- Planning / organizing} \\
\text{- Self-monitoring of behavior/action} \\
\text{ - Impulse control} \\
\text{- Regulation} \]
Executive Function:
Promotes / enhances regulation of:

- Attention / Arousal
- Behavior / Action
- Mood / Emotion
The Delicate Balance of Regulation: Final brain control of emotion / behavior

Top-Down "Brakes" (Prefrontal Cortex)

Bottom-Up "Accelerator" (Brainstem/Limbic System)
Don’t Forget About the Steering

• Conscious control of behavior
• Importance of **tight, predictable structure** for optimal behavior management
• Willfulness misconceptions
 – It’s not *all* willful!
 – Fading control at the “edge of the cliff”
 • Behavioral “curve balls” in homes, schools, detention...
Final Thoughts re Regulation: Power Steering vs Manual Steering

- **Regulated** steering = *power* steering!
 - Easier to make appropriate motor / behavioral decisions while regulated

- **Dysregulated** steering = *manual* steering
 - Tougher to keep the behavioral “car” on the road
Regulatory “Secret”
The Good Life in the “Comfort Zone”

Optimal Regulation =

Optimal Learning, Behavior, Attention, Memory
Neurobiology of Development

• Brain "sculpts" itself in response to the environment **AT THE SAME TIME** it is developing (via genetic blueprints)
Experience alters brain structure

• These sculpted *structural changes* allow the child’s brain to become the *best brain* for the given surroundings
 – Implications for traumatic stress
 – Implications for foster care placements
Streams of Development: Importance of Connectedness

- Moral
- Social
- Cognitive
- Emotional
Social Communication in traumatized / FASD children
Social Communication: Basic Structure

Social Cognition

Executive Function

Language Function
Social Communication: Trauma / FASD Impacts each area!

Executive Function

Social Cognition

Language Function
When development *veers* off course...
The Brain-Behavior connection: 3 major & intertwined components

- **Genetics / Epigenetics** – What you inherit from both parents

- **Intrauterine environment** – During pregnancy

- **Extrauterine environment** – After pregnancy
The Brain-Behavior Connection: Complexities & Realities

- Genetics / Epigenetics
 - Neurodevelopmental strengths / weaknesses
 - Temperament / Personality
 - Family history of:
 - Attentional disorders
 - Learning disorders (e.g., Dyslexia)
 - Mood disorders (Depression / Bipolar)
 - Anxiety Disorders
 - Neuropsychiatric disorders (Tourette Disorder)
Behavioral Epigenetics: The future is now!

- Epigenetics: chemical alterations to DNA after conception
- May well be the ultimate link between nature & nature
- Some evidence that (on occasion) these alterations may be passed on to the next generation
- Remains (somewhat) controversial
The Brain-Behavior Connection: Complexities & Realities

- **Intrauterine environment**
 - Exposure to drugs (legal / illegal)
 - Exposure to alcohol
 - Maternal stress
 - Maternal nutrition
The Brain-Behavior Connection: Complexities & Realities

• Intrauterine Drug Exposure:
 – The “Myth” of Meth (& crack / cocaine)
 – “Mixing and matching” while pregnant
 – Multiple drug use in pregnancy overwhelms even ultra-fast research computers!
 – Nicotine use increases ADHD risk 4-fold
 – Cannabis use remains a mystery
 – The need for animal models to clarify
 – Slowly accumulating data base of Rx drugs and their effects on fetal development
Influence of Prenatal Alcohol Exposure
FAS: not the whole story
Fetal Alcohol Spectrum Disorders (FASD)

- Fetal Alcohol Syndrome
- Partial FAS
- Alcohol-related Neurodevelopmental Disorder (ARND) ("mild-moderate" FAS)
- Prenatal Exposure to Alcohol (clinically suspected to have FAS but appear physically normal)

Adapted from Streissguth
Human fetus:
7 weeks of gestation
Fetal Alcohol Spectrum Disorder: Affects Multiple Body Systems

- Growth problems (including failure to thrive)
- Brain / CNS damage
- Cardiac defects
- Skeletal abnormalities
- Cranio-facial anomalies
- Kidney and other internal organs
- Respiratory problems
- Hearing / Vision problems
Fetal Alcohol Spectrum Disorder

- “Mild – Moderate” FASD is still very problematic
- It is all about *when* the drinking occurred (during the pregnancy) and *how much* alcohol was consumed
- Maternal blood alcohol level = fetal blood alcohol
- “Swiss cheese brain” issues
- Confusion over why *all* fetal ETOH exposure is not created equal
Recognition / Screening /Assessment of FASD
FASD: Critical Facial Abnormalities

- Palpebral fissure (small eyes)
- Thin upper lip
- Smooth philtrum
Fetal Alcohol Syndrome: It doesn’t always look like this
...It can look like this!...clinical examples of FAS: transcending race
Lip-philtrum guides

Hoyme, H. E. et al. Pediatrics
2005;115:39-47

Copyright ©2005 American Academy of Pediatrics
Measurement of palpebral fissures

Measuring palpebral fissure length
FASD: Impact on Brain Structure
Severe brain damage caused by prenatal alcohol exposure

Severe FAS

5-day old infants

Normal Brain

photo: Clarren, 1986
Corpus Callosum

• 100 million neurons!!!
• Connects the two brain hemispheres
• Allows the left side to communicate with the right side
• Assists the individual child to calm down during / after “meltdown”
• Is often damaged by prenatal alcohol exposure / traumatic stress
Corpus Callosum
Gross structural abnormalities in FAS
(12 year old male subjects)
Star Trek Medicine: Diffusion Tensor Imaging

Inter-hemispheric Fiber Tractography through Corpus Callosum

Fractional anisotropy maps

FASD

Control

Anatomical images
FASD Secondary Disabilities: Recent research findings

- A recent L/T study of individuals with FASD:
 - Mean age: 14 yrs (range 6-51 yrs)
 - N = 415
 - Mean IQ = 86 (Range 29-126)
 - 80% of the sample *not* raised by biological parents
 - 60% had trouble with the law
 - 50% were in confinement
 - 49% had repeated inappropriate sexual behavior
 - 35% had drug / alcohol problems
 - Early diagnosis 2-4 times more likely to prevent or lessen impact of these secondary disabilities

Streissguth 2004
Harsh Reality: Combined Brain Impact of FASD + Traumatic Stress

- CTAC Assessment Data: 37% of sample had trauma + FASD (Henry, et al 2007)
- Essential to factor-in *both* of these issues when dealing with at-risk children
- So...
Prenatal Stress

Video Clip: “Killer Stress”
The Brain-Behavior Connection: Complexities & Realities

- Chronic and Severe Prenatal Stress:
 - Growing appreciation of negative impact on fetus
 - What level of stress is damaging?
 - Some placental stress buffering is protective
 - By 12 weeks of gestation, the limbic system is susceptible to chronic stress (via cortisol)
 - Prenatal stress can lower birth weight
 - Prenatal can impact adult health (think ACE)
 - Solid early life parenting / attachment can be protective (and even reverse deleterious effects)
Prenatal Nutrition

- Fetus is not the “perfect parasite”
- Dutch WW II prenatal stress study:
 - Fetal Programming: Preparing the baby for the life outside the womb
- Overlap with prenatal alcohol exposure
The Brain-Behavior Connection: Complexities & Realities

- **Extrauterine environment**
 - Parental attachment / nurturing
 - Parental style / psychopathology
 - Nutritional status
 - Exposure to violence, natural disasters
 - Exposure to neglect
 - Exposure to abuse (verbal / emotional / physical / sexual)
Building the Brain: Using Mirrors

- **Mirror Neurons** “smart cells” that explain how we connect and relate to each other
The Brain-Behavior Connection: Complexities & Realities

• The 2-way street of attachment
 – Traumatized / FASD infants may have mirror neuron damage
 • Similar pattern may be seen in some ASD infants
 – Optimal attachment depends on both parent and infant having intact “mirror equipment”
 – Neurotypical parents adopting infants at birth can experience vague sense of unease & ineptness due to infant’s brain damage (similar to ASD)
 – “Double (attachment) whammy” of FASD & trauma
The Science of Attachment

- *Parenting From the Inside Out* by Daniel Siegel, MD
- *The Developing Brain* by Dan Siegel, MD
- *Mirroring People* by Marco Iacobani, MD
Child Traumatic Stress & the Developing Brain
“Trauma Trumps Everything!!!”

Sandra Bloom, MD
Research reveals a strong link between all types of child abuse / neglect and the subsequent development of psychiatric illness in adulthood.

New findings link child traumatic stress with variety of adult medical illness.
Traumatic Stress & the Child’s Developing Brain

- Early childhood traumatic stress to the developing brain results in:
 - **Physical neuroplastic brain changes that**
 - Cause abnormal functioning (including memory)
 - Contribute to problematic behaviors
 - Contribute to developmental delays
 - Result in child being unable to **realize potential**
So... what about neglect???
But...this case only involves neglect!
Neglect: The **Worst** Offender
Developmental Impact of Neglect

- Physical growth delays ("failure to thrive")
- Language delays
- Cognitive / learning delays
- Regulatory (arousal / emotional / behavioral) issues
- Social communication problems
- Attachment dysfunction
- Immune dysfunction

De Bellis 2005
Working Together to Reduce the Impact of Trauma in Young Children

Creative Collaboration and the neurodevelopmental / neurobehavioral impact of traumatic stress

25 August 2011
Jim Henry, PhD, MSW
Mark A. Sloane, DO
Ben Atchison, PhD, OTR

WMU Children’s Trauma Assessment Center
Kalamazoo, MI
Psychopharmacologic Treatment in Children / Adolescents
Changing Landscape of Psychotropic Medication

- Since 2000, many new medications have been introduced
- It is difficult for primary care physicians to keep pace with new meds
- Especially tough for JJ/MH professionals to get *useful* information on medication
- New choices = new treatment opportunities
- These are exciting times!!
Psychopharmacologic Treatment

• Psychopharmacology as part of multi-modal Tx

• Critical questions:
 – **When** to do meds!
 – **Which med** to do first?

• Adequate follow-up essential (the details matter!)

• For optimal medication treatment:
 – Need effective **collaboration / communication**
 • With parents / teachers / MH professionals / other supervisory adults (tutors / coaches / case managers / direct care staff/ OT’s / SLP’s)
Psychopharmacologic Treatment

• **Important points in using medications:**
 - Target Symptoms vs DSM-IV Diagnoses
 - “Deconstructing the DSM”
 - *Brain-based* meds (stay tuned!)
 - Impairment of function requirement:
 • **Starting** medications
 • Changing medication **doses**
 • Changing **type** of medication
Psychopharmacologic Treatment

Important points in using medications:

– Emphasize that the **GOAL** of med Tx is to **restore normal (as possible) brain function**

– Remember the **"COMFORT ZONE"**

– Optimal med Tx **allows** other treatment modalities (CBT, OT, DBT) to be more effective

– Impact of substance use / abuse
Remember, its all about...

Leveling the playing field !!!!
Specifics of optimized brain-based medication treatment
It’s baaaack!
Meds via vehicle-brain metaphor

• Accelerator
• Brakes
• Steering
Optimized Brain-based Medication Treatment

• **Major target area:**

 Brakes:
 – Focus / concentration
 – Arousal dysregulation
 – Executive dysfunction
 • Working memory
 • Impulse control
 • Hyperactivity
 – Mood dysregulation

• **Major target area:**

 Accelerator:
 – Sleep / arousal
 – Limbic irritability
 • Anger / explosiveness
 • Mood lability
 – Callosal dysfunction
 – Anxiety / OCD
 – Panic / Fight-Flight
 – Depression
Psychotropic Medication
Proposed Algorithm (Sloane 2011)

Key Clinical Questions:

1) Sleep Issues? Y or N
2) Severe Mood Issues? Y or N
3) Executive Dysfunction:
 - Impulse Control Issues? Y or N
 - Regulation Issues? Y or N

Revisit regulation until stable →→
Psychotropic Medication
Proposed Algorithm

• **If regulation is solid:**

5) Low motivation / low arousal? Y or N
6) ↓ focus / attention? Y or N
7) Depression? / Anxiety? Y or N
Psychotropic Medication
Proposed Algorithm

• Are medications now optimized? Y or N
• Is the playing field now level? Y or N

• If not, use other physiologic treatments:
 – Sensory-focused occupational therapy
 – Exercise / Complex Movement (Yoga, Tai Chi)
 – Optimized nutrition
 – Expressive Therapies (Music, Art, Dance)
A level playing field allows other treatment modalities to be more effective

- Psychotherapy
- Case management
- Wraparound protocols
- Behavioral management
- Social skills training
- Parent training
- MST
- Tutoring
Remember...
Medication is the *beginning* of the journey (not the end)
Questions???