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Abstract

Practical applications of recently developed sensor 
fusion algorithms perform poorly in the real world 
due to a lack of proper evaluation during development. 

Existing evaluation metrics do not properly address a wide 
variety of testing scenarios. This issue can be addressed using 
proactive performance measurements such as the tools of 
resilience engineering theory rather than reactive perfor-
mance measurements such as root mean square error. 
Resilience engineering is an established discipline for evalu-
ating proactive performance on complex socio-technical 
systems which has been underutilized for automated vehicle 
development and evaluation. In this study, we use resilience 
engineering metrics to assess the performance of a sensor 
fusion algorithm for vehicle localization. A Kalman Filter is 
used to fuse GPS, IMU and LiDAR data for vehicle localiza-
tion in the CARLA simulator. This vehicle localization algo-
rithm was then evaluated using resilience engineering metrics 
in the simulated multipath and overpass scenario. These 

scenarios were developed in the CARLA simulator by 
collecting real-world data in an overpass and multipath 
scenario using WMU’s research vehicle. The absorptive, adap-
tative, restorative capacities, and the overall resilience of the 
system was assessed by using the resilience triangle. 
Simulation results indicate that the vehicle localization 
pipeline possesses a higher quantitative resilience when 
encountering overpass scenarios. Nevertheless, the system 
obtained a higher adaptive capacity when encountering 
multipath scenarios. These resilience engineering metrics 
show that the fusion systems recover faster when encoun-
tering disturbances due to signal interference in overpasses 
and that the system is in a disturbed state for a shorter 
duration in multipath scenarios. Overall these results demon-
strate that resilience engineering metrics provide valuable 
insights regarding complicated systems such as automated 
vehicle localization. In future work, the insights from resil-
ience engineering can be used to improve the design and thus 
performance of future localization algorithms.

Introduction

Partially automated and fully autonomous vehicles (AVs) 
are systems capable of navigating through different 
driving environments and making decisions with 

limited or no human input [1]. These systems exist to improve 
safety but the number of accidents have caused distrust from 
the society [2,3]. California’s Department of Motor Vehicles 
reported the disengagement and accident reports of AVs from 
2014-2018 and it was determined that many of the disengage-
ments were due to other road users (pedestrians, cyclists and 
vehicles) and that those disengagements were perceived as 
high-risk events for the driver and passengers [4,5]. According 

to Wang et al. the number of disengagements varies amongst 
AV manufacturers and ranges from 2x10-4 to 3 disengage-
ments per mile [6]. In general, the cause of failure in the system 
varies greatly and can occur from behavior prediction, object 
detection, the decision making of the vehicle, hardware 
failures or software failures. These accident reports state that 
in many cases the human had to take over control of the 
vehicle because the AV was exposed to unexpected objects or 
scenarios and wasn’t capable of reacting to these conditions. 
The system was unable to track the object or interpret the 
information received from the sensor(s) [6]. Therefore, can 
be considered as systems with low operational resilience since 
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they are unable to adapt to different scenarios. These studies 
and reports indicate the need for better methodologies for 
decision making, perception algorithms and fault 
tolerant solutions.

The architecture of an AV is composed of three subsys-
tems (i) the perception subsystem, (ii) the planning subsystem 
and (iii) the control subsystem [7]. An AV is responsible for 
collecting data from sensors, perceiving the environment, as 
well as planning and vehicle control. The perception subsystem 
is one of the most crucial since a misinterpretation or misde-
tection of the environment can cause the vehicle to execute a 
dangerous maneuver. The perception subsystem of an autono-
mous system collects data through sensors such as radars, 
LiDAR, cameras, GNSS and IMU to acquire knowledge from 
the environment. For years, artificial intelligence and meth-
odologies such as state estimation techniques have been used 
in the perception subsystem to perform object detection, 
sensor fusion, localization, free space detection and other 
derivatives [8]. Despite the incredible potential that artificial 
intelligence has in this field and the effectiveness of state esti-
mation methods and thus sensor fusion, the real world data 
is subjected to noise and often results in poor detection or 
false-positive detections [9, 10].

Artificial intelligence based sensor fusion has been the 
subject of active research for many years and there are several 
techniques to evaluate its performance [11]. However, most of 
these metrics are developed in a specific application domain 
and often lack implementation in a more general practical 
domain. This means that there is a gap between the perfor-
mance measures used in testing environments and the ones 
used in real world environments [12]. Sensor fusion metrics 
can be divided into fusion data with ground truth and without 
ground truth. Metrics that use ground truth are for example, 
root mean square error (RMSE), accuracy, association, detec-
tion performance, etc [12]. While metrics without ground 
truth can be fusion break rate, delay, etc. Some performance 
measures may be influenced by the user's subjectivity and the 
testing domain, which may vary depending on the application 
domain [11, 13]. The development of a metric subjected to all 
possible scenarios is very complex. The metrics for fusion 
systems depend on the user’s needs and the current metrics 
are effective but do not operate as expected in the practical 
domain as evidenced by the AV disengagement reports 
discussed previously.

Resilience engineering (RE) is an emerging topic of 
systems engineering which is related to safety management. 
RE can improve AV's operation and development due to its 
ability to overcome limitations of existing safety management 
strategies. RE designs towards proactive safety rather than 
the current standard of reactive safety [14]. In general, RE 
provides techniques for improving the operational resilience 
of complicated systems. From a systemic view, resilience is 
the intrinsic ability of a system to adjust its functioning prior 
to, during, or following changes and disturbances to the 
system while sustaining required operations under both 
expected and unexpected conditions. Aspects that compose 
RE include soft redundancy, functional diversity, and control 
at instability. The RE community widely recognizes AVs as 
an exciting application, but the only studies currently existing 

are too limited in scope; they model AV effects on traffic rather 
than the AV system's performance [15, 16]. This is because the 
engineering required to develop all driving aspects for an AV 
is highly interdisciplinary, specialized, and a new skill set 
within the automotive community.

Despite the benefits that RE possesses to improve the 
operational resilience of a system compared to traditional 
methods, it has not been applied to improve the operational 
resilience of the perception subsystem of an autonomous 
system. Other papers such as [17] state that they used resilience 
assessment metrics; however, many of these metrics are not 
consistent with the four cornerstones of RE (responding, 
monitoring, anticipating, and learning) [18]. In addition, these 
metrics indicate the system's ability to complete a given task 
but do not provide information about the system’s overall 
performance. This is problematic because the RE literature 
states that a system may fail internally and could still achieve 
the desired goal [19]. Therefore, these metrics are reactive 
instead of proactive, which goes against the key concepts of 
RE. In a previous study, our research group used RE metrics 
to assess the resilience of an AV’s control subsystem [20] when 
performing path tracking. The application of RE for the opera-
tional improvement and assessment of an AV’s perception 
subsystem has not been performed and it is imperative to 
achieve eventual resilient performance of the entire AV 
system. Thus there is a research gap between RE and assess-
ment methods for perceptions algorithms.

This paper addresses this research gap by applying RE 
to evaluate the performance of a sensor fusion algorithm for 
AV localization. Vehicle localization was performed by 
fusing GPS, IMU and LiDAR data using a Kalman Filter 
(KF) in the CARLA simulator. The performance of the KF 
was assessed in an overpass, and a multipath scenario. These 
scenarios were developed by collecting real-world data using 
a fully instrumented 2019 Kia Niro [21] to analyze the effect 
on the GPS receiver. The RE metrics of absorptive, adaptive, 
and restorative capacities as well as the overall resilience are 
presented and applied to the fusion pipeline by applying the 
resilience triangle. The metrics presented in this study 
provide the user with insights about the overall performance 
of the system rather than an outcome assessment like tradi-
tional performance measures. Overall this is a novel contri-
bution to both RE and AV research since RE evaluation of 
AV sensor fusion has not been previously addressed to 
our knowledge.

Methodology
The quantitative resilience assessment will be performed by 
fusing GPS, IMU and LiDAR data for an overpass and 
multipath scenario and evaluating its performance using RE 
metrics in CARLA. In this section we will present a brief 
overview of localization and sensor fusion. Next, the overall 
methodology of RE will be  presented and the associated 
metrics chosen will be described. Lastly, the development of 
real-world representative scenarios in the CARLA simulator 
are presented.
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Localization
Localization is the methodology within the perception 
subsystem to precisely estimate the position of the ego vehicle 
in the world [9, 22]. However, GPS sensors suffer from several 
drawbacks such as multipath and signal interference effects. 
Multipath errors occur when a vehicle traverses an area with 
towering buildings or other tall infrastructure with reflective 
surfaces, and the signal path between the satellite and the 
receiver is not direct. Instead, the signal bounces off reflective 
surfaces before reaching the receiver. This increases the 
accuracy of the receiver since the duration of the signal's 
propagation time increases. The signal interference effect 
occurs when the vehicle traverses areas that cause interference 
between the satellite and the receiver. These circumstances 
may involve tunnels, overpasses, trees, etc. The receiver deter-
mines the distance by measuring the signal's propagation 
time. Therefore, if the receiver has some interference, it cannot 
effectively compute the distance.

In autonomous driving (AD), localization is important 
because the estimation of the vehicle's position relies on GPS 
data. An increase in the positioning error of GPS sensors 
decreases the performance of the system and can lead to 
dangerous outcomes. Studies in the literature state that to 
achieve safe maneuvering, an accuracy of 10 cm is required 
[23], while other studies state that with less than 30 cm of 
accuracy, safe AV driving can be achieved [24]. This improve-
ment in accuracy can be achieved using sensor fusion but the 
system is still greatly affected whenever the GPS signal is lost. 
To demonstrate the performance of a localization algorithm 
affected by poor GPS signal and multipath effects, we use RE 
metrics to measure the system's operational resilience. Next 
we will discuss sensor fusion and the concept of the KF used 
in this study.

Sensor Fusion
Sensor fusion is used to improve measurements of two or more 
sensors, since individually there can be significant noise. There 
are several methods that have been used to fuse data from two 
or more sensors. These methods are: (1) estimation methods 
based on Gaussian filters (e.g, KF or particle filters (PF)), (2) 
probabilistic inference methods (Bayes theorem), and (3) arti-
ficial intelligence methods based on machine learning algo-
rithms [22]. These methods have been used over the years to 
accurately localize the ego vehicle for AD. In this research, 
we utilize a KF to perform vehicle localization. The concept 
of KF will be introduced and discussed next.

Kalman Filter
KF is an algorithm used in various fields to estimate the 
unknown state of the system. Several applications such as 
navigation, localization and object tracking have been devel-
oped with the implementation of a KF [25].

The traditional KF is used with linear systems and 
discrete processes. The KF possesses two phases, the predic-
tion and the update phase. In the prediction phase, the KF 
uses the estimated state of the previous timestep to predict 

the current state. This predicted state is called the a priori state 
since it has no information about the current state. The equa-
tions for the prediction phase are the following:

	 x̂ F x B uk k k k k k k� �� � �� �1 1 1 	 (1)

	 P F P F Qk k k k k k
T

k| |� � �� �1 1 1 	 (2)

Where x̂k is the predicted state estimate, xk is the best state 
estimate, Bk is the control input matrix, Fk is the matrix that 
possesses the dynamics of the system, Pk is the predicted cova-
riance matrix, Qk is the process noise covariance matrix and 
uk is the input.

In the update phase, a new measurement is received from 
a sensor and used to compute the error between the current 
measurement and the a priori state (this is also called residual 
measurement). This residual measurement is then multiplied 
by the optimal Kalman gain to correct the previous state. This 
corrected state is also called the posterior state. The equations 
for the update phase are the following:
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Where Sk is the measurement residual covariance matrix, 
Hk is the measurement model matrix, Rk is the measurement 
noise covariance matrix, zk is the measurement vector and Kk 
is the Kalman gain.

The KF is used for linear systems; nevertheless, most real-
world applications are nonlinear. Therefore, further develop-
ments of the KF are the EKF and Unscented Kalman Filter 
(UKF), which both operate with nonlinear systems.

In this study a KF was used to fuse GPS, IMU and LiDAR 
odometry in order to produce a better estimate of the vehicle’s 
position. Although EKF and UKF are more robust, a KF is 
sufficient for providing insight into the impact of using RE 
metrics with sensor fusion algorithms. Also, due to the linear 
nature of the KF, the results are easier to interpret compared 
to other methods for this first application of RE. The state 
vector of the KF used in this study is x = [px, py, pz, Vx, Vy, Vz, ϕ
, θ, ψ]. Where px, py and pz are the position of the vehicle in the 
x, y and z axis. Vx, Vy and Vz are the velocity on the x, y and z 
axis. Lastly, 𝜙, 𝜃, 𝜓 are the roll, pitch and yaw of the vehicle. 
The states of the KF are in Cartesian coordinates in the global 
coordinate system. The motion model used to perform the 
fusion is the following:

	 p p v t a tk k k k� � � �1
21

2
· ·� � 	 (7)

	 v v a tk k k� � �1 ·� 	 (8)
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where a and 𝜔 are the linear acceleration and angular 
velocity. The linear acceleration and angular velocity are 
measured from the IMU sensor and are inputs to the motion 
model. The motion model represents the state space of the 
system and the control inputs represent the action space used 
to propagate the system's dynamics. To obtain LiDAR odometry, 
LiDAR and IMU data were fused using FAST-LIO (Fast LiDAR-
Inertial Odometry) [26, 27]. Much research has been done on 
vehicle localization based on GPS/IMU/LiDAR fusion; there-
fore, specifics on this will not be covered in this study [28-30].

Resilience Engineering 
Overview
RE is a paradigm for safety management that focuses on 
complex socio-technical systems [31]. In the past, safe systems 
have been engineered by evaluating events that have already 
happened [14]. RE improves safety systems by considering 
events that have yet to happen thus engineering safety that is 
proactive. Additionally it is important to define what is meant 
by safety. Safety I focuses on preventing adverse conditions 
that might disrupt the system, but sometimes these conditions 
come with necessary adjustments, the system needs to enhance 
its performance. That is when Safety II arises. RE is considered 
a methodology under Safety II, which focuses on strength-
ening the system’s ability to succeed during varying 
conditions [32].

The concept of RE has been adopted in safety manage-
ment as a new tool for proactive safety. Resilience refers to 
managing unexpected changes and succeeding when the orga-
nization (or system) is under pressure [33]. The four corner-
stones representing the resilience of a system are: responding, 
monitoring, anticipating, and learning [18]. These abilities are 
are defined as follows:

•• Ability to respond: A system must be able to notice 
when a change has occurred and address it quickly.

•• Ability to monitor: A system should be able to monitor 
its own performance and perceive changes outside the 
system that can potentially become an opportunity or 
a threat.

•• Ability to learn: This ability provides the system with 
the means to learn from events that have caused 
accidents and others that could have potentially 
disrupted the system.

•• Ability to anticipate: The purpose of this ability is to 
anticipate potential threats and opportunities for 
the system.

However, these four abilities can be summarized in the 
three capacities a resilient system must have [34]. These 
capacities are:

•• Absorptive capacity: The absorptive capacity of a system 
refers to how well it can lessen the negative impacts of 

disruptions while maintaining better 
residual performance.

•• Restorative capacity: Is the system’s capacity to 
be quickly restored with minimal intervention and to 
reach higher levels of performance than in a 
disrupted condition.

•• Adaptive capacity: Is the system's response to the 
stressor's effect, its ability to operate in a stable disturbed 
condition, and its preparedness to begin the recovery 
process following a failure event.

A resilient system must monitor the system's state and 
change its boundaries when drifting towards unsafe actions. 
Managing the decision-making process when having the goals 
and priorities well defined are key for a resilient system [35, 
36]. RE improves a system's performance by correlating 
performance and safety instead of treating them as mutually 
exclusive. Even though RE has the potential to mitigate risks 
by improving the system’s performance, safety is more 
complex than just a methodology to improve safety. RE has 
been applied as a safety management tool in several domains 
and successfully improved their performance. These domains 
include aviation, healthcare, petrochemical plants, manufac-
turing, railways, and construction [33]. With the use of RE, 
studies in the aviation industry have shown a reduction of 
approximately 40% of life cycle cost for aircraft control actua-
tors [37]. Furthermore, RE has aided some healthcare systems 
to identify areas of weaknesses within their organization [38].

RE defines resilience in terms of how the system performs, 
not an attribute that a system possesses. Therefore, a system 
cannot be resilient but it can have the potential for resilient 
performance. Figure 1 shows the performance of a resilient 
system. In this Figure we see how a resilient system after 
failure (point A), is able to quickly return to its nominal condi-
tion and maintain its functionality or reliability. While a 
system with low resilience is more affected by the disturbance 
and takes longer to return to its nominal condition. The points 
A-B-C and A-B-D form a triangle called the resilience triangle 
and it is used to measure the resilience of the system to distur-
bances or events. This concept is used to present a series of 
metrics to evaluate the ability of the system to react to 

 FIGURE 1  General resilience triangle for a high and low 
resilience performance system and a system subjected 
to failure
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disturbances. In this study, the resilience triangle is applied 
to evaluate a sensor fusion algorithm but the concept can 
be extended to other subsystems or applications. In the next 
section we will break down the analysis of the resilience triangle.

Evaluation Metrics from 
Resilience Engineering 
Principles
To evaluate the fusion algorithms and the performance of the 
system when exposed to adverse events (or failure), we will 
use the resilience triangle. The resilience triangle consists of 
measuring the performance of the system in the three capaci-
ties that a resilient system must have in the face of external 
disturbances [39]. To analyze the resilience triangle presented 
in the previous section, we present the phases of the resilience 
triangle in Figure 2 [34].

The resilience triangle has all three capacities described 
in the previous section. The absorptive capacity is the ability 
of the system to reduce the effects of failure and maintain high 
functionality. This is the fault phase represented between 
points Fo and Fi1. The absorptive capacity can be determined 
by the following equations:

	 Ab
F

F
Co

i
ab=

1

· 	 (12)

	 C
F

F F
ab

o

i

� �
�

�

�
�

�

�
�1
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where Fo is the initial functionality before the failure and 
Fi1 is the residual functionality of the system at time T1. The 
capacity value Cab, is used to compensate for the aging impact 
and associated functionality loss during the failure phase of 
the system. In other words, when the system fails, it does not 
always return to its original nominal state. Consequently, as 
the system experiences more and more failures, it degrades 
over time, a phenomenon known as the aging factor. Therefore, 
the capacity value Cab compensates for this degradation effect.

The restorative capacity is the ability of the system to 
restore itself after failure quickly. In other words, it is the 
inverse of the difference between Tf and Ti2. If a system recovers 
quickly the time difference will approach zero; hence, achieve 
a higher score in the restorative capacity. Therefore, the restor-
ative capacity can be computer by the following equation:
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where Tf is the end time after recovery, T2 is the time 
before the system starts to recover, To is the time the failure 
occurs, F'f is the functionality post-recovery with a degrada-
tion due to aging, and Fi2 is residual functionality before 
recovery. CR is the ratio between the functionality obtained 
after recovery and the ideal post-recovery functionality. This 
is because a system does not always return to its previous state 
after a failure. We  use CR as a one in our analysis since 
we assume that the system will return to our nominal condi-
tion. The CT factor is used for long recovery periods and 
prevents the duration from going to infinity.

The system's adaptive capacity is the ratio of operating 
duration from the initial functionality Fo to the new function-
ality Ff post-recovery. It can be  computed using the 
following equation:

	 Ad
T T

T T
i i

f o
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�

1 2 1 	 (14)

Finally the overall resilience of the system (RES) can 
be obtained by incorporating the system's capacities. The rela-
tionship between the capacities and resilience can be repre-
sented using the Venn Diagram shown in Figure 3. The overall 
resilience of the system is the overlap between the three capaci-
ties of the system. In other words, a system with resilient opera-
tional performance must possess all three of these capacities.

According to Yarveisy et al. [34] the relationship of the 
system's overall resilience can be represented by the following 
mathematical expression.

	 RES Ab Ad Res Ab Ad Res� � �· · · 	 (15)

Yarveisy et al. [34] states that the system's absorptive 
capacity is the sole independent resilience trait that can 
be observed. Unlike restorative and adaptive capacities, the 
absorptive capacity is not reactive. It is the system's inherent 
ability to tolerate the negative effects of destructive events, 
and it only depends on the system’s physical state [34]. Higher 
absorptive capacities mean that other capacities have less of 
an impact.

 FIGURE 2  Trapezoid describing the phases of the 
resilience triangle

Downloaded from SAE International by The WMU Libraries, Monday, July 31, 2023



	 6 QUANTITATIVE RESILIENCE ASSESSMENT OF GPS, IMU, AND LIDAR SENSOR FUSION

The goal of this study is to evaluate the performance of a 
KF in an overpass and multipath scenario. Therefore, the 
nominal condition used is a baseline scenario (which will 
be described in the following section) where the vehicle does 
not encounter any disturbances from the environment. Any 
deviation from this nominal condition will be considered as 
a performance loss and the resilience triangle will be applied 
to assess the resilience of the system. The performance loss of 
the overpass and multipath scenario can be seen as the error 
of the fused state with respect to the state of the baseline 
scenario (nominal state). In other words, deviations from this 
nominal state that exceed a user defined threshold (in this 
case 10 cm), is considered as a performance loss and the resil-
ience triangle will be applied to showcase the performance of 
the system under unforeseen events. In the next section 
we will describe the simulation setup.

Simulation Setup
The CARLA simulator was used to test and evaluate the local-
ization algorithm of an AV. CARLA is an open source simu-
lator developed for training, validating, and testing algorithms 
for AV systems. It provides a simulation environment with a 
wide range of sensor specifications, environment conditions, 
vehicles, etc. It allows the user the ability to create customiz-
able environments for testing and validating autonomous/
ADAS driving behaviors. Scenarios like computer vision 
testing in adverse weather conditions or path planning while 
sharing the road with aggressive road users can be simulated 
[40-42]. Performance evaluation in simulation is an important 
stage before deploying AVs to real-world scenarios.

To perform vehicle localization in the CARLA simulator, 
a vehicle equipped with a GPS, IMU and LiDAR was used to 
perform sensor fusion. The GPS, IMU and LiDAR sensors 
were configured to operate at 10, 100 and 10 Hz, respectively. 

The vehicle was manually driven on the route shown in Figure 
4 in the Town 10 of the CARLA simulator in order to collect 
and store sensor data. After the data was stored, a Gaussian 
noise was added to the IMU data with a standard deviation 
of 0.05 rad/s for the gyroscope and 0.2 m/s2 for the acceler-
ometer. To avoid transformations between the GPS, LiDAR 
and IMU frames, the sensors were spawned in the same 
position with respect to the vehicle. FAST-LIO [26,27] was 
used to perform SLAM and obtain LiDAR odometry for the 
fusion pipeline.

To evaluate the localization pipeline using the resilience 
metrics, three test scenarios were developed. Real-world data 
was collected using a fully instrumented 2019 Kia Niro in 
order to develop real-world representative scenarios in the 
CARLA simulator. Using the real world data as a guide, the 
scenarios were then replicated in the simulator. These 
scenarios are the following:

	 1.	 A baseline scenario where the vehicle uses GPS + Real 
Time Kinematics (RTK) and does not encounter 
deviations due to environmental disturbances. For 
this scenario we observed that the GPS + RTK 
configuration of our fully instrumented research 
vehicle in areas with no disturbances, operated under 
a 10 cm accuracy. Therefore, the GPS data is subjected 
to a Gaussian noise with a standard deviation of 10 cm 
throughout the whole route. This scenario will serve as 
the nominal condition for our resilience analysis.

	 2.	 A baseline scenario + signal interference, which will 
be called an overpass scenario. Our research vehicle 
was used to collect GPS data while traversing under 
an overpass in the I-94 highway in Portage, Michigan, 
in order to observe the effect on the GPS receiver. 
Figure 5a depicts the data collected as the vehicle 
traverses an overpass of approximately 50 meters.

	 3.	 A baseline scenario + multipath effect, which will 
be called multipath scenario. Similar to the previous 
scenario, WMU's research vehicle was used to collect 
data in downtown Kalamazoo, Michigan, to observe 
the effect of multipath errors on GPS receivers. Figure 
5b depicts the path taken to analyze this effect.

 FIGURE 4  Route for localization assessment FIGURE 3  Venn diagram representing the logical relation 
between the three capacities of a resilient system
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The collected data for both scenarios was analyzed and 
plotted. A colorbar was utilized to illustrate how the accuracy 
varies when the receiver encounters the aforementioned 
effects. As shown in Figure 6, there is a gap in the traveled 
path in the overpass scenario due to signal interference. 
Similarly, in the multipath scenario, the accuracy of the 

receiver decreases from 0.12 meters to 1.2 meters when passing 
through radio wave reflective surfaces on tall buildings.

To recreate these scenarios in the CARLA simulator, a 50 
meter gap is created in the route shown in Figure 4. We assume 
in this gap, no GPS information is received and the fusion 
pipeline only relies on LiDAR and IMU. The created overpass 
scenario is shown in Figure 7. For the multipath scenario, 
we add a Gaussian noise with zero mean and standard devia-
tion of 1.2 meters for 30 meters in the region shown in Figure 
7. Now that the scenarios are generated, we can move forward 
with the sensor fusion implementation and the RE evaluation.

The RE metrics shown in the previous section were used 
to assess the performance of the system under the developed 
test scenarios.

Results
To compare conventional evaluation methods versus RE 
metrics, we used root mean square error (RMSE) to assess the 
estimated vehicle position against the ground truth. The 
evaluation of the KF using RMSE is shown in Figure 8.

In Figure 8 we observe that in the overpass scenario where 
there is no GPS signal and the fusion process relies on LiDAR 
odometry and IMU data, the system is capable of achieving 

 FIGURE 5  GPS data collection with WMU’s research vehicle 
for the overpass scenario (a) and the multipath scenario (b).

 FIGURE 6  Analysis of overpass and multipath scenario

 FIGURE 7  Overpass and multipath scenario in the 
CARLA simulator
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RMSE values of 0.145 and 0.1396 m in the x and y axis, respec-
tively. This is due to LiDAR odometry being more precise than 
wheel odometry, even though it is also subjected to low drift 
over time [43]. On the other hand, we  observe that the 
multipath scenario obtains a higher RMSE in both axes 
compared to the overpass scenario. This indicates that the 
performance of the multipath scenario degrades in the 
presence of increased accuracy due to reflective surface effects. 
Using RMSE as an evaluation metric demonstrates that the 
system performs better in overpass scenarios despite the 
absence of GPS measurements due to signal interference.

This metric is effective, but it provides no information 
other than the error relative to the ground truth. This is a 
problem because it is often difficult to obtain the ground truth 
in the real world since relied upon sensors are susceptible to 
environmental noise and conditions. Furthermore, it does not 
provide the user information regarding the performance of 
the system at the time of failure. The results are also not neces-
sarily extensible to other similar test scenarios. Therefore, this 
metric may display false positives, biased information, or 
d i f ferent  s y s tem p er for m a nc e  outc ome s  i n 
alternative environments.

As a contrast, to perform the RE analysis and apply the 
resilience triangle, we plot the estimated state error versus the 
ground truth using the Euclidean distance equation. However, 
the behavior is nonlinear; therefore, we apply a Savitzky-Golay 
filter [44] to smooth the error between measurements. The 
error between both states and the smoothened output is shown 
in Figure 9.

To isolate the performance loss of the system, the baseline 
scenario is subtracted from the other scenarios. Figure 10 
depicts the system's performance loss behavior when subjected 
to the corresponding scenario.

By identifying the four points of the trapezoid depicted 
in Figure 2 and fitting a line between each pair of points, 
we can obtain the three resilience phases of the system. The 
point of intersection between each pair of lines is then deter-
mined to form the trapezoid describing the resilience phases 
of the system. Figure 11 depicts the three lines that were used 
to form the trapezoid's three regions and the intersection points.

The trapezoidal vertices were used to determine the resil-
ience triangle's parameters and compute the capacities and 
the overall resilience of the system. Table 1 displays the param-
eters obtained for each scenario from each estimated trapezoid 

shown in Figure 11. In Table 1, we see that the Fo and Ff values 
are 0.10 m. This is because the baseline scenario operated 
under 10 cm. Observing the behavior of the baseline scenario 
reveals that it fluctuates around 10 cm, but when subtracted 
from the other scenarios, it approaches zero. Therefore, our 
actual nominal condition is 10 cm. In other instances, the user 
may define this nominal condition based on the system's 
operation requirements.

Using the parameters shown in Table 1, the equations 
12-15 are used to compute the system's capacities and overall 
resi l ience. Figure 12 depicts the results of our 
resilience evaluation.

Figure 12 shows that the system achieved a higher restor-
ative capacity in the overpass scenario than in the multipath 
scenario. The restorative capacity indicates that when the 
system is exposed to overpass scenarios, it returns quicker to 

 FIGURE 8  RMSE of the state estimate versus ground truth  FIGURE 9  Savitzky-Golay smoothing filter applied to fused 
error measurements

 FIGURE 10  Isolated failure of the system for the overpass 
and multipath scenario

Downloaded from SAE International by The WMU Libraries, Monday, July 31, 2023



	 9QUANTITATIVE RESILIENCE ASSESSMENT OF GPS, IMU, AND LIDAR SENSOR FUSION

its normal condition than when it is exposed to multipath 
effects caused by tall buildings and reflective surfaces. In other 
words, when an AV exits an overpass, it does not take long to 
receive a GPS measurement with RTK corrections and correct 
the state estimate of the vehicle's position. In contrast, when 
an AV navigates through tall buildings, the GPS signal with 
RTK corrections takes longer to receive because the accuracy 

of these measurements require clear skies. However, overpass 
or GPS interference scenarios are typically under clear 
sky conditions.

In addition, the overpass scenario scored higher in the 
absorptive capacity compared to the multipath scenario. This 
indicates that the system reduces environmental effects in 
overpass scenarios more effectively. This is due to the fact that 
in the absence of GPS measurements, the system relies more 
on LiDAR and IMU measurements and uses the previous state 
estimate (which operated under the nominal conditions) to 
obtain predicted state estimates until a new GPS measurement 
is obtained. However, in multipath scenarios, the system 
receives noisier GPS measurement; hence, if the measurement 
and process covariance matrices are not changed under these 
conditions, it negatively affects the performance of the local-
ization pipeline. These covariance matrices are frequently 
challenging to tune [45], and if your system lacks redundant 
sensors or an algorithm for adaptive adjustment of noise cova-
riance matrix [46], it will deviate significantly from the 
nominal condition (even in the presence of reliable LiDAR 
and IMU measurements).

The system obtained a higher adaptive capacity score in 
the multipath scenario than in the overpass scenario. This 
means that the system spends less time in a disturbed state 
(from Fi1 to Fi2). This is consistent with Figure 11, as the system 
is subject to this state of disruption for brief durations. In the 
multipath scenario, the fusion error shown in Figure 11 has 
only one concave point, whereas the overpass scenario has 
many. Therefore, as soon as the system departs from its 
nominal condition and enters a disturbed state, it attempts to 
return to its nominal state. This makes sense because, in 
multipath scenarios, the system still receives GPS measure-
ments (although they are not as precise), so the KF attempts 
to reduce the state estimate error. Therefore, when an AV 
traverses areas with tall buildings, the GPS may or may not 
receive accurate measurements (because the sensor is affected 
by multipath effects). This causes the system to respond more 
quickly and require less time in a disturbed state. As the 
system does not receive GPS measurements in overpass 
scenarios, it is slower to react and in a disturbed state.

Finally, we can observe that the system achieved a higher 
overall resilience score for the overpass scenario is approxi-
mately 0.40, whereas for the multipath scenario is 0.16. The 
outcomes of our resilience evaluation indicate that AVs have 
greater operational resilience in overpass scenarios. Therefore, 
when an AV encounters unanticipated GPS interference 
conditions, the system achieves a higher operational perfor-
mance and mitigates the environmental effects more effec-
tively. In addition, simulation results indicate that LiDAR 
odometry should be utilized in overpass scenarios to reduce 
GPS interference due to its more accurate odometry predic-
tions and low drift.

Conclusions
Despite the advances in AV perception tasks such as the free 
space detection, object detection and localization, accidents 
have occurred in the past where perception algorithms are 

 FIGURE 11  Trapezoid regions of the resilience triangle for a) 
overpass scenario b) multipath scenario

TABLE 1 Resilience parameters from each corresponding 
estimated trapezoid

Scenario/Params Overpass scenario Multipath scenario
Fo (m) 0.10 0.10

Fi1 (m) 0.393 1.366

Fi2 (m) 0.35 1.379

Ff (m) 0.10 0.10

To (s) 39.27 36.74

Ti1 (s) 46.67 42.76

Ti2 (s) 48.36 43.30

Tf (s) 51.15 49.60

 FIGURE 12  Capacities and overall resilience of the system 
for the overpass and multipath scenario
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not able to recognize certain objects and the vehicle makes 
the unsafe decisions. Perception algorithms use performance 
measures that are subjected to the testing or application 
domain, but they lack performance in the practical domain. 
This study fills that research gap by proposing RE metrics that 
assess a system’s resilient performance. RE is a new method-
ology that consists of proactive safety methods to improve the 
operational resilience of a system. In this study, we evaluated 
a KF that fuses GPS, IMU and LiDAR data to perform vehicle 
localization in the CARLA simulator using RE metrics and 
RMSE. This fusion pipeline was assessed in an overpass and 
multipath scenario. The overpass and multipath scenarios 
were created by collecting data with WMU’s research vehicle, 
analyzing their effect on the GPS receiver and replicating it 
in the CARLA simulator. The overpass and multipath 
scenarios were evaluated by computing the absorptive, 
adaptive, restorative capacities and the overall resilience of 
the system using the resilience triangle. Simulation results 
demonstrate that the overpass scenario outperformed the 
multipath scenario by achieving a lower RMSE along the x 
and y axes. Nevertheless, this metric provides no information 
about the system at the time of the failure beyond the error 
relative to the ground truth. On the other hand, the RE metrics 
provide us with information regarding the system's behavior 
when it is disturbed and indicate that the overpass scenario 
possessed a greater absorptive and restorative capacity. This 
means that when tunnels or overpasses are present, the system 
can mitigate the effects of a failure and recover more quickly. 
However, the system achieved greater adaptability in the 
multipath scenario, resulting in a shorter failure duration. The 
system obtained a higher overall resilience in the overpass 
scenario meaning that AVs have greater operational resilience 
in GPS interference circumstances.

RE metrics possess the tools to identify where and how 
complicated systems fail to meet performance requirements. 
By exploiting areas of weakness in a system, the user can apply 
countermeasures in order to account for more practical 
scenarios traditional metrics overlook. It is imperative that 
research and development of AV systems use RE metrics for 
evaluation to ensure resilience in real world performance. For 
future work, we will expand this study by performing the 
resilience assessment on real-world data. Specifically, the 
vehicle localization assessment pipeline will be applied to the 
shown areas in Kalamazoo, MI. In addition, a correlation 
between the two studies will be presented to provide insight 
on the RE metrics evaluating operational performance 
between testing and the practical domain.
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