EVAL 6970: Meta-Analysis Effect Sizes and Precision: Part I

> Dr. Chris L. S. Coryn Kristin A. Hobson Fall 2013

Agenda

- Effect sizes based on means
- Review questions
- In-class activity

Note

- Statistical notation varies widely for the topics covered today and in future lectures
- By convention (and for consistency), we will predominately use Borenstein, Hedges, Higgins, and Rothstein's (2010) notation

The Apples and Oranges Argument: Both are Fruits

ξ

 X_1

 X_2

 X_3

X₄

 X_5

 X_6

 X_7

 X_8

δ

δ

δ

δ

δ

δ

δ

δ

There is a useful analogy between including different outcome measures in a meta-analysis, the common factor model, multipleoperationism, and concept-tooperation correspondence

Effect Sizes

Raw Mean Difference, D

- The raw (unstandardized) mean difference can be used on a meaningful outcome measure (e.g. blood pressure) and when all studies use the same measure
- The population mean difference is defined as

$$\Delta = \mu_1 - \mu_2$$

D from Independent Groups

• The mean difference Δ from studies using two independent groups (e.g., treatment and control) can be estimated from the sample group means \bar{X}_1 and \bar{X}_2 as

$$D = \bar{X}_1 - \bar{X}_2$$

D from Independent Groups

• Assuming $\sigma_1 = \sigma_2 = \sigma$ (as is assumed for most parametric statistics) the variance of *D* is

$$V_{D} = \frac{n_{1} + n_{2}}{n_{1}n_{2}} S_{pooled}^{2}$$

where

$$S_{pooled} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

D from Independent Groups

• Assuming $\sigma_1 \neq \sigma_2$ the variance of *D* is

$$V_D = \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$$

• For both $\sigma_1 = \sigma_2$ and $\sigma_1 \neq \sigma_2$ the standard error of *D* is

$$SE_D = \sqrt{V_D}$$

D from Dependent Groups

• When groups are dependent (e.g., matched pairs designs or pretestposttest designs) then *D* is the difference score for each pair

$$D = \overline{X}_{diff}$$
 or $D = \overline{X}_1 - \overline{X}_2$

D from Dependent Groups

Where the variance is

$$V_D = \frac{S_{diff}^2}{n}$$

Where n is the number of pairs, and

$$SE_D = \sqrt{V_D}$$

D from Dependent Groups

• If *S*_{diff} must be computed

$$S_{diff} = \sqrt{S_1^2 + S_2^2 - 2 \times r \times S_1 \times S_2}$$

- Where r is the correlation between pairs
- If $S_1 = S_2$ then

$$S_{diff} = \sqrt{2 \times S_{pooled}^2 (1-r)}$$

Standardized Mean Difference, d and g

• Assuming $\sigma_1 = \sigma_2 = \sigma$ (as is the case for most parametric statistics) the standardized mean difference population parameter is defined as

$$\delta = \frac{\mu_1 - \mu_2}{\sigma}$$

• The standardized mean difference (δ) from independent groups (e.g., treatment and control) can be estimated from the sample group means \bar{X}_1 and \bar{X}_2 as

$$d = \frac{\bar{X}_1 - \bar{X}_2}{S_{within}}$$

 Where S_{within} is the within-groups standard deviation, pooled across groups

$$S_{within} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

Where the variance is

$$V_d = \frac{n_1 + n_2}{n_1 n_2} + \frac{d^2}{2(n_1 + n_2)}$$

And the standard error is

$$SE_d = \sqrt{V_d}$$

 In small samples (N < 20), d overestimates δ and this bias can be reduced by converting d to Hedges' g using the correction factor J, where

$$J = 1 - \frac{3}{4df - 1}$$

For two independent groups

$$df = n_1 + n_2 - 2$$

 Using the correction factor J, Hedges' g is calculated as

$$g = J \times d$$

• With

$$V_g = J^2 \times V_d$$

And

$$SE_g = \sqrt{V_g}$$

 When groups are dependent (e.g., matched pairs designs or pretestposttest designs) then d is the difference score for each pair

$$d = \frac{\bar{Y}_{diff}}{S_{within}} = \frac{\bar{Y}_1 - \bar{Y}_2}{S_{within}}$$

• Where *S_{within}* is

$$S_{within} = \frac{S_{diff}}{\sqrt{2(1-r)}}$$

Where the variance is

$$V_d = \left(\frac{1}{n} + \frac{d^2}{2n}\right) 2(1-r)$$

Where n is the number of pairs, and

$$SE_D = \sqrt{V_d}$$

• If S_{diff} must be computed

$$S_{diff} = \sqrt{S_1^2 + S_2^2 - 2 \times r \times S_1 \times S_2}$$

- Where r is the correlation between pairs
- If $S_1 = S_2$ then

$$S_{diff} = \sqrt{2 \times S_{pooled}^2 (1-r)}$$

 In small samples (N < 20), d overestimates δ and this bias can be reduced by converting d to Hedges' g using the correction factor J, where

$$J = 1 - \frac{3}{4df - 1}$$

• Where, in dependent groups

$$df = n - 1$$

 Using the correction factor J, Hedges' g is calculated as

$$g = J \times d$$

- With $V_g = J^2 \times V_d$
- And $SE_g = \sqrt{V_g}$

Effect Direction

 For all designs the direction of the effect $(\overline{X}_1 - \overline{X}_2 \text{ or } \overline{X}_2 - \overline{X}_1)$ is arbitrary, except that the same convention must be applied to all studies in a meta-analysis (e.g., a positive difference indicates that the treated group did better than the control group)

Review Questions

1. When is it appropriate to use D?

2. When is it appropriate to use *d*?

3. When is it appropriate to use g?

Today's In-Class Activity

- Individually, or in your working groups, download "Data Sets 1-6 XLSX" from the course Website
 - Calculate the appropriate effects sizes, standard deviations, variances, and standard errors for Data Sets 1, 2, 3, and 4
 - Be certain to save your work as we will use these data again