EVAL 6970: Meta-Analysis Effect Sizes and Precision: Part II

Dr. Chris L. S. Coryn Kristin A. Hobson Fall 2013

Agenda

- Effect sizes based on binary data
- Effect sizes based on correlations
- Converting among effect sizes
- Precision
- Review questions
- In-class activity

2 × 2 Tables for Binary Data

 For risk ratios, odds ratios, and risk differences data are typically represented in 2 × 2 tables with cells A, B, C, and D

	Events	Non-Events	N
Treated	A	В	n_1
Control	С	D	<i>n</i> ₂

Risk Ratios

 The risk ratio is the ratio of two risks where

Risk Ratios

 For the purpose of meta-analysis, computations are conducted using a log scale where

Log Risk Ratio = ln(Risk Ratio)

Risk Ratios

• With variance

$$V_{\text{Log Risk Ratio}} = \frac{1}{A} - \frac{1}{n_1} + \frac{1}{C} - \frac{1}{n_2}$$

And standard error

$$SE_{\text{Log Risk Ratio}} = \sqrt{V_{\text{Log Risk Ratio}}}$$

Odds Ratios

 The odds ratio is the ratio of two odds where

Odds Ratio =
$$\frac{AD}{BC}$$

Odds Ratios

 For the purpose of meta-analysis, computations are conducted using a log scale where

Log Odds Ratio = ln(Odds Ratio)

Odds Ratios

With variance

$$V_{\text{Log Odds Ratio}} = \frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D}$$

And standard error

$$SE_{\text{Log Odds Ratio}} = \sqrt{V_{\text{Log Odds Ratio}}}$$

Risk Difference

• The risk difference is the difference between two risks where

Risk Difference
$$= \left(\frac{A}{n_1}\right) - \left(\frac{C}{n_2}\right)$$

 For risk differences all computations are performed on the raw units

Risk Difference

With variance

$$V_{\text{Risk Difference}} = \frac{AB}{n_1^3} + \frac{CD}{n_2^3}$$

And standard error

$$SE_{\rm Risk\,Difference} = \sqrt{V_{\rm Risk\,Difference}}$$

Correlation Coefficient r

• The estimate of the correlation population parameter ρ is r where

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

• With variance

$$V_r = \frac{(1 - r^2)^2}{n - 1}$$

Correlation Coefficient r

- For meta-analyses, r is converted to Fisher's z
- The transformation of r to z is

$$z = 0.5 \times \ln\left(\frac{1+r}{1-r}\right)$$

Correlation Coefficient r

• With variance

$$V_z = \frac{1}{n-3}$$

And standard error

$$SE_z = \sqrt{V_z}$$

Converting Among Effect Sizes

- Often, different studies report different effect sizes (if at all) and for a meta-analysis all effect sizes need to be converted to a common index
- Meta-Analysis 2.0 will automate this process and many effect sizes calculators are also useful

Converting from Odds Ratio to d

 To convert from the log odds ratio to d

$$d = \text{Log Odds Ratio} \times \frac{\sqrt{3}}{\pi}$$

With variance of

$$V_d = V_{\text{Log Odds Ratio}} \times \frac{3}{\pi^2}$$

Converting from *d* to Odds Ratio

 To convert from d to the log odds ratio

Log Odds Ratio =
$$d \times \frac{\pi}{\sqrt{3}}$$

With variance of

$$V_{\text{Log Odds Ratio}} = V_d \times \frac{\pi^2}{3}$$

Converting from r to d

• To convert from r to d

$$d = \frac{2r}{\sqrt{1 - r^2}}$$

• With variance of

$$V_d = \frac{4V_r}{(1-r^2)^2}$$

Converting from d to r

• To convert from *d* to *r*

$$r = \frac{d}{\sqrt{d} = a}$$

• Where *a* is a correction factor when $n_1 \neq n_2$ $a = \frac{(n_1 + n_2)^2}{n_1 n_2}$

Converting from *d* to *r*

• With variance

$$V_r = \frac{a^2 V_d}{(d^2 + a)^3}$$

Precision

- Provides the context for computing standard errors
- Precision includes variance, standard error, and confidence intervals
- With variance V_Y the standard error $SE_Y = \sqrt{V_Y}$ can be computed
 - For different effect size metrics, the computation of V_Y differs

Confidence Intervals

 Assuming that an effect size is normally distributed

$$LL_Y = \overline{Y} - 1.96 \times SE_Y$$

And

$$UL_Y = \overline{Y} + 1.96 \times SE_Y$$

 1.96 is the Z-value corresponding to confidence limits of 95% (with error of 2.5% at either end of the distribution)

Review Questions

- 1. When is it appropriate to use the risk ratio?
- 2. When is it appropriate to use the odds ratio?
- 3. When is it appropriate to use the risk difference?
- 4. When is it appropriate to use r?
- 5. What factors affect precision and how?

Today's In-Class Activity

- Individually, or in your working groups, download "Data Sets 1-6 XLSX" from the course Website
 - Calculate the appropriate effects sizes, standard deviations, variances, and standard errors for Data Sets 5 and 6
 - Calculate the 95% confidence intervals (i.e., *LL* and *UL*) for Data Sets 1, 2, 3, 4, 5, and 6
 - Be certain to save your work as we will use these data again