Hydrogeology Concepts and Exercise Slide Talk

- 1. Title Slide
- 2. A description of what students will learn by viewing the presentation and completing the exercise.
- 3. Drawing of the hydrologic cycle for discussion.
- 4. Definition of hydrology and distinction of what hydrogeologists study.
- 5. Photos of hydrologists and hydrogeologists.
- 6. Hydrogeologists must know what is under Michigan to know more about groundwater.
- 7. Michigan's glacial history and examples of glacial landscapes.
- 8. Rock thicknesses, those exposed in the Grand Canyon vs. what is under Michigan.
- 9. Bedrock outcrop map (under glacial sediments) with time periods given for different geologic ages of rock and a cross-section depicting the basin structure of Michigan bedrock.
- 10. Hydrogeologists must know rock types and their associated properties.
- 11. Photo examples of unconsolidated sediments.
- 12. Photo of alternating sandstone and siltstone lithified sediments in Pennsylvanian age core from Ingham Co. MI.
- 13. Definition of porosity and pore space.
- 14. Grain shape analysis description and image.
- 15. Fluid flow and permeability definition.
- 16. Sediment and permeability and sorting diagram.
- 17. Water table definition and shallow aquifers.
- 18. Water table zones diagram and definitions.
- 19. Unconfined vs. confined aquifer definitions.
- 20. Glacial sediments map and bedrock aquifer maps of Michigan.
- 21. Cone of depression and artesian well diagrams.
- 22. Understandings of geologic setting and rock type lead to understanding environments of deposition and the resulting effects on water quality.
- 23. Deltaic depositional environment example diagram.
- 24. Human groundwater contamination diagram.
- 25. Salt water encroachment diagram.
- 26. Exercise title page.
- 27. Exercise adaptation.
- 28. Exercise steps.
- 29. Picking a geographic area of interest
- 30. How to find a topographic map online.
- 31. Finding a topographic map, quadrangle location.
- 32. Pdf map files and zooming the image.
- 33. Finding water well data using DEQ website.
- 34. The Scanned Water Well Record Retrieval System
- 35. Retrieving pdf's of driller's reports or logs.
- 36. Interpreting the driller's logs, header information.
- 37. Interpreting the driller's logs, lithology information and well total depth.
- 38. Interpreting the driller's logs, driller's information and static water level.

- 39. Creating lithologic columns using driller's lithology descriptions.
- 40. Example of a blank lithologic chart.
- 41. Putting driller's lithogies into the form and marking the static water level.
- 42. Calculating well elevation from a topographic map.
- 43. Interpolation of contour lines to find well elevation.
- 44. Calculating the well elevation of the differing lithologies.
- 45. Repeat the steps to create more lithologic/stratigraphic columns.
- 46. Mark well locations on the topographic map.
- 47. Pick a depth datum, an elevation common to all the stratigraphic columns.
- 48. Drawing cross-sectional lines on the topographic map.
- 49. Line up columns on the datum elevation to compare stratigraphically.
- 50. Note map distances between wells when comparing lithologies.
- 51. Interpretation of the spatial variability of the geologic materials encountered between wells and results of the example cross-sections.
- 52. More interpretation of example well sediments and variability.
- 53. Static water level variability and bedrock elevation variability.
- 54. Summary of usefulness of example data and availability.
- 55. End of show.