
CS5310 – Algorithms – 3 credit hours – 2 hours lecture and 2 hours recitation every week

This course is a continuation of the study of data structures and algorithms, emphasizing
methods useful in practice. It provides a theoretical foundation in designing algorithms as
well as their efficient implementations. The focus is on the advanced analysis of
algorithms and on how the selections of different data structures affect the performance
of algorithms. Topics covered include: sorting; search trees, heaps, and hashing; divide-
and-conquer; dynamic programming; backtracking; branch-and-bound; amortized
analysis; graph algorithms; shortest paths; network flow; computational geometry;
number-theoretic algorithms; polynomial and matrix calculations; and parallel
computing.

Learning Outcomes

• Reinforce analytic development and problem solving abilities, and develop a foundation
in computer science.

• Show progress with regard to understanding the analysis and performance of algorithms
(for further use, e.g., in graduate level courses), including knowledge and use of
terminology and how the theory connects with real-world applications, possibly in
different and new areas.

• Apply the concepts covered in the course to written and practical problems, e.g., by
combining problem solving with computer programming and the use of software tools as
part of assignments.

• Students who earn a “C” or better in this course should have knowledge of
o Sequential algorithms pertaining to the greedy, divide-and-conquer, dynamic

programming, backtracking and branch-and-bound paradigms;
o Parallel algorithms pertaining to SIMD, MIMD, shared memory and message

passing systems;
o Introductory databases and data management applications;
o Analyzing iterative and recursive sequential and parallel algorithms;
o Efficient data structures such as AVL trees, 2-3 trees, min-max heaps, B-trees.

Topics/modules with Bloom classifications are listed below: ���

K = Know the terminology���

C = Comprehend so as to paraphrase/illustrate

���A = Apply it in some way, in homework assignments or projects

N = Elective ���

Algorithms (CS 5310)

(Review and assignments on) Performance analysis: Iterative/recursive algorithms (A),
Asymptotic analysis (A), Recurrence relations (C, A)���

Algorithm design paradigms (review and assignments/implementations): Divide-and-

conquer (quicksort (A), merge sort (A), K-th order selection (A), . . .), Greedy method
(greedy knapsack (A), minimum cost spanning trees (A), shortest paths/Dijkstra’s
algorithm (A), Huffman trees/codes (C),. . .), Dynamic programming (all- pairs shortest
paths/Floyd’s algorithm (A), TSP (K), 0/1 knapsack (K)), Backtracking (N -queens (C), .
. .), Branch-and-bound ((n2 − 1)-puzzle) (C) ���

Data structures: Embedded in the above topics, plus some more advanced such as AVL-
trees (C), 2-3 trees (A), B-trees (A), min-max heaps (C)���

Parallel algorithms: SIMD/MIMD (C), Some coverage/examples of shared memory
(Pthreads, OpenMP) programs (K), and message passing (MPI) (K) ���

DB/data management applications. ���

Algorithms Recitation - Project/Assignment ideas

Implement and compare quicksort vs. mergesort. Consider variations of quicksort.
Compare sorting algorithms - linked list vs. array implementations.���
Compare various priority queue implementations - can consider binary trees, Fib heaps
etc.
Compare shortest path algorithms - Dijkstra vs modified Dijkstra (using heaps).
Compare min cost spanning tree solutions - Prim’s vs. Kruskal’s, etc.���
Implement B-tree variations - 2-3 search trees - leaves at the same level versus others, B+
trees etc.
Implement dynamic programming - chain matrix multiplication, all pairs shortest paths
etc.
K-select implementation - vary group-size and compare performance.���
K-select - have multiple arrays and then k-select from combined (arrays could be sorted,
unsorted)
Weighted selection���.
Puzzle solving - n-Queens, Sudoku, chess etc.���
Dictionary (with user-defined entries, multiple dictionaries, shared by multi-users, etc.)���
Calendar, contact list, . . .���
Document (email) organizer (by subject, keyword, etc.)

CS5541 – Computer Systems – 3 credit hours – 2 hours lecture and 2 hours recitation
every week

This course offers an intensive study of computer system design, emphasizing modern
operating systems and their impact on application programming. Topics covered include:
processes and threads; CPU scheduling; process synchronization; deadlock, memory
management; cache, main memory; virtual memory; virtual machine; shared-memory
and message-passing based parallelism; clusters; database concepts; security and
protection; authentication; and cloud computing.

Learning Outcomes

• Reinforce the essential concepts in computer systems, and develop a systems
foundation in computer science.

• Apply the concepts covered in the course to written and practical problems.
• Students who earn a “C” or better in this course should have knowledge of

o Processes management including processes and threads, CPU scheduling,
process synchronization, deadlock;

o Memory management including swapping, page replacement, segmentation,
storage and I/O, file and directory, disk;

o Memory Hierarchy including cache, main memory, virtual memory, virtual
machine;

o Parallelism including instruction-level parallelism, data-level parallelism, thread-
level parallelism, shared-memory and message-passing, multiprocessors and
clusters;

o Database including data organization, indexing, RAID, concurrency control,
transaction processing;

o Security and Protection;
o Cloud computing.

Topics/modules with Bloom classifications are listed below: ���

K = Know the terminology���

C = Comprehend so as to paraphrase/illustrate

���A = Apply it in some way, in homework assignments or projects

N = Elective ���

Computer Systems (CS 5541)

Process	 Management:	 	 Processes	 and	 Threads	 (A),	 CPU	 scheduling	 (A),	 	
Process	 synchronization	 (A),	 Deadlock(C),	 	

Memory	 Management:	 	 Swapping	 (C),	 Page	 Replacement(C),	 Segmentation(C),	
	 	 	 Storage	 and	 I/O	 (C),	 File	 and	 Directory	 (A),	 Disk(C)	
Memory	 Hierarchy:	 	 Cache(C),	 Main	 memory(C),	 Virtual	 memory	 (C),	 Virtual	
Machine(C),	
Parallelism:	 	 Instruction-‐level	 (C),	 data-‐level	 (C),	 thread-‐level(C),	 	 	

	 	 	 Shared-‐memory	 and	 Message-‐Passing	 (A),	 Multiprocessors	 and	
Clusters(C)	
Database:	 	 Data	 Organization(C),	 Indexing,	 RAID(C),	 Concurrency	 Control(C),	 	

Transaction	 Processing	 (C)	
Security:	 	 	 Security	 and	 Authentication	 (K)	
Cloud:	 	 	 Cloud	 computing	 (K)	

Systems Recitation - Project/Assignment ideas

• Implement	 a	 command	 line	 interpreter	 (that	 is,	 shell)	
• Develop	 a	 real	 and	 working	 web	 server	
• Build	 a	 user-‐level	 library	 that	 implements	 a	 good	 portion	 of	 a	 file	 system	
• Build	 a	 version	 control	 system

Theory Foundations (CS 5800)

Catalog Description
The course covers the theory of computer science emphasizing automata, grammars and
their applications in the specification of languages and computer systems, models of
computation, and complexity. Analytic and problem solving abilities will be reinforced,
and concepts covered in the course will be applied to real-world problems.

Learning outcomes
A. General learning outcomes:
- Reinforce analytic development and problem solving abilities, and develop a

foundation in computer science.
- Show progress with regard to understanding the theory of computation (for use, e.g.,

in further graduate level courses), including knowledge and use of terminology and
how the theory connects with real-world applications, possibly in different and new
areas.

- Apply the concepts covered in the course to written and practical problems, e.g., by
combining problem solving with computer programming and the use of software
tools as part of assignments and a semester project. The latter may be done in teams
or individually.

B. Content specific outcomes:
Students who earn a “C” or better will demonstrate

- an introductory to intermediate-level knowledge of definitions, theorems and
algorithms for problem solving relating to automata, grammars and formal languages;

- knowledge of the theory of decidability, time & space complexity analysis and
complexity classes, and models of computation;

- the ability to synthesize knowledge and use tools of automata, grammars and
computational models to solve problems relating to language specification, compiling
and machine computation.

Topics/modules with Bloom classifications are listed below: ���

K = Know the terminology���

C = Comprehend so as to paraphrase/illustrate

���A = Apply it in some way, in homework assignments or projects

 N = Elective

Review of discrete mathematics and proof methods (A), cardinality/countability (C);
Formal languages, the Chomsky hierarchy: languages, their grammars, and automata
(regular (A), context-free (A), context-sensitive (K), recursively enumerable (C)), their
grammars, and automata (finite state automata D/NFA (A), push-down automata (A),

linear-bounded automata (K), Turing machines (A)); Stochastic automata (Markov
models)(C))
Undecidability: Church-Turing thesis (C); some undecidable problems (C); reductions
(K); relation to recursively enumerable languages (C), recursive languages (C), Turing
machines (C)
Intractable problems, complexity: Non-deterministic time and space complexity (C),
Polynomial time and space, classes P and NP (C); some NP-Complete problems (K)
Applications to compiling: lexical analysis (C), parsing (LL(k), LR(k) (K)), ambiguity
(C)
Models of computation: λ-calculus (K) (in relation to functional languages such as Lisp,
Scheme, . . .); (partial-) recursive functions (K); Markov algorithms (C) (in relation to
logic programming languages such as Prolog); cellular automata (K)

Theory Foundations Recitation - Project/Assignment ideas

Implement a Regular Expression parser: Take as input the regular expression; convert the
input regular expression to an NFA; convert the NFA obtained to a DFA and regular
grammar. Convert DFA to a minimum state DFA.

Implement a simulator for a vending machine, elevator, traffic light control.

Implement a yacc/bison description of a calculator.

Implement the CYK algorithm to decide membership in the language of a given a
context-free grammar.

Example of a parser generator assignment: “Generate and implement a bison (yacc)
grammar which incorporates a part of XML, that includes the syntax for the given
example. Your grammar should adhere to xml as given at the url
http://www.w3schools.com/xml. You can check the syntax of your xml code using the
xml validator at http://www.w3schools.com/xml. Generate a lexical analyzer that inputs
xml code and recognizes your terminals (tokens). You may use flex (lex). Generate and
run your parser. Extend your parser to handle more features of the example.”

Implement a Turing Machine simulator for a Turing machine transition table given on
input. Apply to various examples. Supply a suitable user interface.

Implement a Markov model.

