Intro to Repp: Connecting C++ to R

Kevin Lee

Department of Statistics
Western Michigan University

January 25, 2019

Kevin Lee Statistics Colloquium WMU January 25, 2019 1/23



Outline

@ List of Useful R Packages

Kevin Lee Statistics Colloquium WMU January 25, 2019 2/23



List of Useful R Packages

Some of the top most downloaded R packages:

@ Check https://support.rstudio.com/hc/en-us/articles/
201057987-Quick-1list-of-useful-R-packages.

Kevin Lee Statistics Colloquium WMU January 25, 2019 3/23


https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages
https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages

Outline

@ Introduction to Rcpp

Kevin Lee Statistics Colloquium WMU January 25, 2019 4 /23



@ Sometimes R code is just not fast enough.

o We will talk about how to improve performance by rewriting key
functions in C++.

@ Rcpp package is a fantastic tool written by Dirk Eddelbuettel and
Romain Francois.

@ Rcpp makes it very simple to connect C++ to R.

Kevin Lee Statistics Colloquium WMU January 25, 2019 5/ 23



Typical bottlenecks that C++ can address include:

@ Loops that can't be easily vectorized because subsequent iterations
depend on previous ones.

@ Recursive functions, or problems which involve calling functions many
times.

Kevin Lee Statistics Colloquium WMU January 25, 2019 6 /23



How to Install Rcpp?

Install the latest version of Rcpp from CRAN

@ install.packages("Rcpp")

You also need a working C++ compiler. To get it:

@ On Windows, install Rtools.
@ On Mac, install Xcode from the app store.

@ On Linux, sudo apt-get install r-base-dev or similar.

Kevin Lee Statistics Colloquium WMU January 25, 2019 7/ 23



Key Motivation: Speed (lteration)

: 1.
Two different ways to compute 1
f <- function(n, x) for(i in 1:n) x <- 1/(1+x)
g <- function(n, x) for(i in 1:n) x <- (1+x)~(-1)
Check computing time with rbenchmark package:

library(rbenchmark)
N <- 10000
benchmark(f(N,1), g(N,1), order="relative")[,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019

8 /23



Key Motivation: Speed (lteration)

Rcpp to compute H%:

cppFunction("double fcpp(int n, double x){
for (int i=0; i<n; i++){
x = 1/(1+x);
}
return x;

1))
Check computing time:

benchmark(f (N,1), g(N,1), fcpp(N,1), order="relative")[,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019 9/ 23



Key Motivation: Speed (Cumulative Sum)

R function to perform a cumulative sum on a vector:

cumsumR <- function(x){
for (i in 2:length(x)){
x[i] <- x[i-1] + x[i]
}

return(x)

¥

cumsumR (1:10)
cumsum(1:10)

Kevin Lee Statistics Colloquium WMU

January 25, 2019

10 / 23



Key Motivation: Speed (Cumulative Sum)

Rcpp function to perform a cumulative sum on a vector:

cppFunction("NumericVector cumsumRcpp(NumericVector x){
for (int i=1; i<x.length(); i++){
x[i] = x[i-1] + x[i];
}

return x;

"
cumsumRcpp (1:10)

Check computing time:

x <- ¢(1:10000)
benchmark (cumsumR(x), cumsumRcpp(x), order="relative")[,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019 11 / 23



Key Motivation: Speed (Bootstrap)

R function to perform the bootstrap:

bootR <- function(x, B){

bootStatistic <- matrix(0, nrow = B, ncol = 2)

n <- length(x)

for(i in 1:B){
bootSample <- x[sample(l:n, size = n, replace = TRUE)]
bootStatistic[i, 1] <- mean(bootSample)
bootStatistic[i, 2] <- sd(bootSample)

}

return(bootStatistic)

}

set.seed(125)
dat <- rnorm(1000, mean = 21, sd = 10)
resultR <- bootR(dat, 1000)

sd(resultR[,1])

Kevin Lee Statistics Colloquium WMU January 25, 2019 12 / 23



Key Motivation: Speed (Bootstrap)

Recpp function to perform the bootstrap:

cppFunction("NumericMatrix bootRcpp(NumericVector x, int B){

NumericMatrix bootStatistic(B, 2);

int n = x.length();

for (int i=0; i<B; i++){
NumericVector bootSample = x[floor(runif(n, 0, n))];
bootStatistic(i, 0) = mean(bootSample);
bootStatistic(i, 1) = sd(bootSample);

}

return bootStatistic;

"

set.seed(125)
resultRcpp <- bootRcpp(dat, 1000)
all.equal(resultR, resultRcpp)

Kevin Lee Statistics Colloquium WMU January 25, 2019 13 /23



Key Motivation: Speed (Bootstrap)

Check computing time:

benchmark (bootR(dat, 1000), bootRcpp(dat, 1000),
order="relative") [,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019

14 / 23



Getting Started with C++

cppFunction() allows you to write C++ functions in R:

cppFunction("int add(int x, int y, int z){
int sum = x + y + Z;
return sum;

I

add(1, 2, 3)

When you run the above code, Repp will compile the C++ code and con-
struct an R function that connects to the compiled C++ function.

Kevin Lee Statistics Colloquium WMU January 25, 2019 15 / 23



Example 1

R function:

one <- function(){
1

}

Rcpp function:
cppFunction("int one(){
return 1;

1A

Kevin Lee Statistics Colloquium WMU January 25, 2019 16 / 23



Example 1

This function illustrates important differences between R and C++:

@ The syntax to create a function looks like the syntax to call a function.

@ We declare the type of output the function returns. This function
returns a scalar integer.

@ The scalar equivalents of numeric, integer, character, and logical
vectors are: double, int, String, and bool.

@ The vector equivalents are: NumericVector, IntegerVector,
CharacterVector, and LogicalVector.

@ We must use an explicit return statement to return a value from a
function.

@ Every statement is terminated by a ;.

Kevin Lee Statistics Colloquium WMU January 25, 2019 17 / 23



Example 2

R function:
signR <- function(x){
if(x > 0){
1
} else if (x == O){
0
} elseq{
-1
}
}

Recpp function:
cppFunction("int signC(int x){
if(x > 0){
return 1;
} else if (x == 0){
return O;
} elseq{
return -1;
}
i3]

Kevin Lee Statistics Colloquium WMU January 25, 2019 18 / 23



Example 2

This function illustrates difference between R and C4+:

@ We declare the type of each input in the same way we declare the type
of the output.

This function also illustrates similarity between R and C++:

@ The if statement works the same way as R's.

@ A while statement also works the same way as R's.

Kevin Lee Statistics Colloquium WMU January 25, 2019 19 / 23



R function:
sumR <- function(x){
n <- length(x)
total <- 0
for(i in 1:n){
total <- total + x[i]
}
total
}

Rcpp function:
cppFunction("double sumC(NumericVector x){
int n = x.length(Q);
double total = O0;
for(int i = 0; i < n; i++){
total += x[i];
}
return total;

1A

Kevin Lee Statistics Colloquium WMU January 25, 2019 20 / 23



This function illustrates difference between R and C4+:

To find the length of the vector, we use the .length() method, which
returns an integer.

The for statement has a different syntax: for(init; check;
increment).

In C++, vector indices start at 0.
Use = for assignment, not <-

C++ provides operators that modify in-place: total += x[i] is
equivalent to total = total + x[i].

Kevin Lee Statistics Colloquium WMU January 25, 2019 21 /23



Using sourceCpp ()

@ Use sourceCpp() to load a C++ file from disk in the same way you
use source() to load a file of R code.

@ We can create a C++ file using Rstudio.

Kevin Lee Statistics Colloquium WMU January 25, 2019 22 /23



References

@ Advanced R by Hadley Wickham

@ Dirk Eddelbuettel website
http://dirk.eddelbuettel.com/

Kevin Lee Statistics Colloquium WMU January 25, 2019 23 /23


http://dirk.eddelbuettel.com/

	List of Useful R Packages
	Introduction to Rcpp

