
Intro to Rcpp: Connecting C++ to R

Kevin Lee

Department of Statistics
Western Michigan University

January 25, 2019

Kevin Lee Statistics Colloquium WMU January 25, 2019 1 / 23



Outline

1 List of Useful R Packages

2 Introduction to Rcpp

Kevin Lee Statistics Colloquium WMU January 25, 2019 2 / 23



List of Useful R Packages

Some of the top most downloaded R packages:

Check https://support.rstudio.com/hc/en-us/articles/
201057987-Quick-list-of-useful-R-packages.

Kevin Lee Statistics Colloquium WMU January 25, 2019 3 / 23

https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages
https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages


Outline

1 List of Useful R Packages

2 Introduction to Rcpp

Kevin Lee Statistics Colloquium WMU January 25, 2019 4 / 23



What is Rcpp?

Sometimes R code is just not fast enough.

We will talk about how to improve performance by rewriting key
functions in C++.

Rcpp package is a fantastic tool written by Dirk Eddelbuettel and
Romain Francois.

Rcpp makes it very simple to connect C++ to R.

Kevin Lee Statistics Colloquium WMU January 25, 2019 5 / 23



Why C++?

Typical bottlenecks that C++ can address include:

Loops that can’t be easily vectorized because subsequent iterations
depend on previous ones.
Recursive functions, or problems which involve calling functions many
times.

Kevin Lee Statistics Colloquium WMU January 25, 2019 6 / 23



How to Install Rcpp?

Install the latest version of Rcpp from CRAN

install.packages("Rcpp")

You also need a working C++ compiler. To get it:

On Windows, install Rtools.
On Mac, install Xcode from the app store.
On Linux, sudo apt-get install r-base-dev or similar.

Kevin Lee Statistics Colloquium WMU January 25, 2019 7 / 23



Key Motivation: Speed (Iteration)

Two different ways to compute 1
1+x :

f <- function(n, x) for(i in 1:n) x <- 1/(1+x)
g <- function(n, x) for(i in 1:n) x <- (1+x)ˆ(-1)

Check computing time with rbenchmark package:

library(rbenchmark)
N <- 10000
benchmark(f(N,1), g(N,1), order="relative")[,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019 8 / 23



Key Motivation: Speed (Iteration)

Rcpp to compute 1
1+x :

cppFunction("double fcpp(int n, double x){
for (int i=0; i<n; i++){

x = 1/(1+x);
}
return x;

}")

Check computing time:

benchmark(f(N,1), g(N,1), fcpp(N,1), order="relative")[,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019 9 / 23



Key Motivation: Speed (Cumulative Sum)

R function to perform a cumulative sum on a vector:

cumsumR <- function(x){
for (i in 2:length(x)){

x[i] <- x[i-1] + x[i]
}
return(x)

}

cumsumR(1:10)
cumsum(1:10)

Kevin Lee Statistics Colloquium WMU January 25, 2019 10 / 23



Key Motivation: Speed (Cumulative Sum)

Rcpp function to perform a cumulative sum on a vector:

cppFunction("NumericVector cumsumRcpp(NumericVector x){
for (int i=1; i<x.length(); i++){

x[i] = x[i-1] + x[i];
}
return x;

}")

cumsumRcpp(1:10)

Check computing time:

x <- c(1:10000)
benchmark(cumsumR(x), cumsumRcpp(x), order="relative")[,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019 11 / 23



Key Motivation: Speed (Bootstrap)

R function to perform the bootstrap:

bootR <- function(x, B){
bootStatistic <- matrix(0, nrow = B, ncol = 2)
n <- length(x)
for(i in 1:B){

bootSample <- x[sample(1:n, size = n, replace = TRUE)]
bootStatistic[i, 1] <- mean(bootSample)
bootStatistic[i, 2] <- sd(bootSample)

}
return(bootStatistic)

}

set.seed(125)
dat <- rnorm(1000, mean = 21, sd = 10)
resultR <- bootR(dat, 1000)

sd(resultR[,1])
Kevin Lee Statistics Colloquium WMU January 25, 2019 12 / 23



Key Motivation: Speed (Bootstrap)

Rcpp function to perform the bootstrap:

cppFunction("NumericMatrix bootRcpp(NumericVector x, int B){
NumericMatrix bootStatistic(B, 2);
int n = x.length();
for (int i=0; i<B; i++){

NumericVector bootSample = x[floor(runif(n, 0, n))];
bootStatistic(i, 0) = mean(bootSample);
bootStatistic(i, 1) = sd(bootSample);

}
return bootStatistic;

}")

set.seed(125)
resultRcpp <- bootRcpp(dat, 1000)
all.equal(resultR, resultRcpp)

Kevin Lee Statistics Colloquium WMU January 25, 2019 13 / 23



Key Motivation: Speed (Bootstrap)

Check computing time:

benchmark(bootR(dat, 1000), bootRcpp(dat, 1000),
order="relative")[,1:4]

Kevin Lee Statistics Colloquium WMU January 25, 2019 14 / 23



Getting Started with C++

cppFunction() allows you to write C++ functions in R:

cppFunction("int add(int x, int y, int z){
int sum = x + y + z;
return sum;

}")

add(1, 2, 3)

When you run the above code, Rcpp will compile the C++ code and con-
struct an R function that connects to the compiled C++ function.

Kevin Lee Statistics Colloquium WMU January 25, 2019 15 / 23



Example 1

R function:
one <- function(){

1
}

Rcpp function:
cppFunction("int one(){

return 1;
}")

Kevin Lee Statistics Colloquium WMU January 25, 2019 16 / 23



Example 1

This function illustrates important differences between R and C++:

The syntax to create a function looks like the syntax to call a function.
We declare the type of output the function returns. This function
returns a scalar integer.
The scalar equivalents of numeric, integer, character, and logical
vectors are: double, int, String, and bool.
The vector equivalents are: NumericVector, IntegerVector,
CharacterVector, and LogicalVector.
We must use an explicit return statement to return a value from a
function.
Every statement is terminated by a ;.

Kevin Lee Statistics Colloquium WMU January 25, 2019 17 / 23



Example 2
R function:
signR <- function(x){

if(x > 0){
1

} else if (x == 0){
0

} else{
-1

}
}

Rcpp function:
cppFunction("int signC(int x){

if(x > 0){
return 1;

} else if (x == 0){
return 0;

} else{
return -1;

}
}")

Kevin Lee Statistics Colloquium WMU January 25, 2019 18 / 23



Example 2

This function illustrates difference between R and C++:

We declare the type of each input in the same way we declare the type
of the output.

This function also illustrates similarity between R and C++:

The if statement works the same way as R’s.
A while statement also works the same way as R’s.

Kevin Lee Statistics Colloquium WMU January 25, 2019 19 / 23



Example 3

R function:
sumR <- function(x){

n <- length(x)
total <- 0
for(i in 1:n){

total <- total + x[i]
}
total

}

Rcpp function:
cppFunction("double sumC(NumericVector x){

int n = x.length();
double total = 0;
for(int i = 0; i < n; i++){

total += x[i];
}
return total;

}")

Kevin Lee Statistics Colloquium WMU January 25, 2019 20 / 23



Example 3

This function illustrates difference between R and C++:

To find the length of the vector, we use the .length() method, which
returns an integer.
The for statement has a different syntax: for(init; check;
increment).
In C++, vector indices start at 0.
Use = for assignment, not <-
C++ provides operators that modify in-place: total += x[i] is
equivalent to total = total + x[i].

Kevin Lee Statistics Colloquium WMU January 25, 2019 21 / 23



Using sourceCpp()

Use sourceCpp() to load a C++ file from disk in the same way you
use source() to load a file of R code.
We can create a C++ file using Rstudio.

Kevin Lee Statistics Colloquium WMU January 25, 2019 22 / 23



References

Advanced R by Hadley Wickham

Dirk Eddelbuettel website
http://dirk.eddelbuettel.com/

Kevin Lee Statistics Colloquium WMU January 25, 2019 23 / 23

http://dirk.eddelbuettel.com/

	List of Useful R Packages
	Introduction to Rcpp

