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List of Useful R Packages

Some of the top most downloaded R packages:

Check https://support.rstudio.com/hc/en-us/articles/
201057987-Quick-list-of-useful-R-packages.
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What is Rcpp?

Sometimes R code is just not fast enough.

We will talk about how to improve performance by rewriting key
functions in C++.

Rcpp package is a fantastic tool written by Dirk Eddelbuettel and
Romain Francois.

Rcpp makes it very simple to connect C++ to R.
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Why C++?

Typical bottlenecks that C++ can address include:

Loops that can’t be easily vectorized because subsequent iterations
depend on previous ones.
Recursive functions, or problems which involve calling functions many
times.
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How to Install Rcpp?

Install the latest version of Rcpp from CRAN

install.packages("Rcpp")

You also need a working C++ compiler. To get it:

On Windows, install Rtools.
On Mac, install Xcode from the app store.
On Linux, sudo apt-get install r-base-dev or similar.

Kevin Lee Statistics Colloquium WMU January 25, 2019 7 / 23



Key Motivation: Speed (Iteration)

Two different ways to compute 1
1+x :

f <- function(n, x) for(i in 1:n) x <- 1/(1+x)
g <- function(n, x) for(i in 1:n) x <- (1+x)ˆ(-1)

Check computing time with rbenchmark package:

library(rbenchmark)
N <- 10000
benchmark(f(N,1), g(N,1), order="relative")[,1:4]
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Key Motivation: Speed (Iteration)

Rcpp to compute 1
1+x :

cppFunction("double fcpp(int n, double x){
for (int i=0; i<n; i++){

x = 1/(1+x);
}
return x;

}")

Check computing time:

benchmark(f(N,1), g(N,1), fcpp(N,1), order="relative")[,1:4]
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Key Motivation: Speed (Cumulative Sum)

R function to perform a cumulative sum on a vector:

cumsumR <- function(x){
for (i in 2:length(x)){

x[i] <- x[i-1] + x[i]
}
return(x)

}

cumsumR(1:10)
cumsum(1:10)
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Key Motivation: Speed (Cumulative Sum)

Rcpp function to perform a cumulative sum on a vector:

cppFunction("NumericVector cumsumRcpp(NumericVector x){
for (int i=1; i<x.length(); i++){

x[i] = x[i-1] + x[i];
}
return x;

}")

cumsumRcpp(1:10)

Check computing time:

x <- c(1:10000)
benchmark(cumsumR(x), cumsumRcpp(x), order="relative")[,1:4]
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Key Motivation: Speed (Bootstrap)

R function to perform the bootstrap:

bootR <- function(x, B){
bootStatistic <- matrix(0, nrow = B, ncol = 2)
n <- length(x)
for(i in 1:B){

bootSample <- x[sample(1:n, size = n, replace = TRUE)]
bootStatistic[i, 1] <- mean(bootSample)
bootStatistic[i, 2] <- sd(bootSample)

}
return(bootStatistic)

}

set.seed(125)
dat <- rnorm(1000, mean = 21, sd = 10)
resultR <- bootR(dat, 1000)

sd(resultR[,1])
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Key Motivation: Speed (Bootstrap)

Rcpp function to perform the bootstrap:

cppFunction("NumericMatrix bootRcpp(NumericVector x, int B){
NumericMatrix bootStatistic(B, 2);
int n = x.length();
for (int i=0; i<B; i++){

NumericVector bootSample = x[floor(runif(n, 0, n))];
bootStatistic(i, 0) = mean(bootSample);
bootStatistic(i, 1) = sd(bootSample);

}
return bootStatistic;

}")

set.seed(125)
resultRcpp <- bootRcpp(dat, 1000)
all.equal(resultR, resultRcpp)
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Key Motivation: Speed (Bootstrap)

Check computing time:

benchmark(bootR(dat, 1000), bootRcpp(dat, 1000),
order="relative")[,1:4]
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Getting Started with C++

cppFunction() allows you to write C++ functions in R:

cppFunction("int add(int x, int y, int z){
int sum = x + y + z;
return sum;

}")

add(1, 2, 3)

When you run the above code, Rcpp will compile the C++ code and con-
struct an R function that connects to the compiled C++ function.
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Example 1

R function:
one <- function(){

1
}

Rcpp function:
cppFunction("int one(){

return 1;
}")
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Example 1

This function illustrates important differences between R and C++:

The syntax to create a function looks like the syntax to call a function.
We declare the type of output the function returns. This function
returns a scalar integer.
The scalar equivalents of numeric, integer, character, and logical
vectors are: double, int, String, and bool.
The vector equivalents are: NumericVector, IntegerVector,
CharacterVector, and LogicalVector.
We must use an explicit return statement to return a value from a
function.
Every statement is terminated by a ;.
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Example 2
R function:
signR <- function(x){

if(x > 0){
1

} else if (x == 0){
0

} else{
-1

}
}

Rcpp function:
cppFunction("int signC(int x){

if(x > 0){
return 1;

} else if (x == 0){
return 0;

} else{
return -1;

}
}")
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Example 2

This function illustrates difference between R and C++:

We declare the type of each input in the same way we declare the type
of the output.

This function also illustrates similarity between R and C++:

The if statement works the same way as R’s.
A while statement also works the same way as R’s.
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Example 3

R function:
sumR <- function(x){

n <- length(x)
total <- 0
for(i in 1:n){

total <- total + x[i]
}
total

}

Rcpp function:
cppFunction("double sumC(NumericVector x){

int n = x.length();
double total = 0;
for(int i = 0; i < n; i++){

total += x[i];
}
return total;

}")
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Example 3

This function illustrates difference between R and C++:

To find the length of the vector, we use the .length() method, which
returns an integer.
The for statement has a different syntax: for(init; check;
increment).
In C++, vector indices start at 0.
Use = for assignment, not <-
C++ provides operators that modify in-place: total += x[i] is
equivalent to total = total + x[i].
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Using sourceCpp()

Use sourceCpp() to load a C++ file from disk in the same way you
use source() to load a file of R code.
We can create a C++ file using Rstudio.
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