DEVELOPING DECISION SUPPORT TOOLS FOR THE IMPLEMENTATION OF BICYCLE AND PEDESTRIAN SAFETY STRATEGIES

Deo Chimba, PhD., P.E., PTOE

Associate Professor

Civil Engineering Department

Tennessee State University

3500 John A. Merritt Blvd, Nashville, TN 37209

Phone: 615-963-5430

Email: dchimba@tnstate.edu

STATEMENT OF THE PROBLEM

- Tennessee Department of Transportation (TDOT) has an extensive road safety audit program which uses criteria based on the ratio of crashes to average daily traffic but does not target locations with a high number of bike/pedestrians crashes since there are no bicycle and pedestrian counts.
- A robust methodology is not currently available to identify bicycle and pedestrian high-crash locations in Tennessee.
- The challenge is allocating funds, from TDOT's Highway Safety Improvement Program (HSIP), equitably among rural and urban areas in a way that is most effective at reducing bicycle and pedestrian fatalities and incapacitating injuries.

Research Questions?

- ☐ Are there spatial variations in pedestrian and bicycle crashes?
- How do spatial variations in pedestrian and bicycle crashes associate with socioeconomic and demographic factors?
- □What framework can be adopted to implement bicycle and pedestrian safety strategies?

Transportation Research Center for Livable Communities

Develop Data-Driven Policy Framework

- Develop criteria and conditions for the systematic identification of bicycle and pedestrian high-crash locations in the state.
- □ These criteria will rate each crash-prone location based on injuries and fatalities, coupled with exposure.
- Develop a systematic framework and rating system for future years' so that the analysis can be replicated in the future with less effort.
- ☐ Prioritize funding for improvements. To support the development of a data-driven draft policy for prioritizing and maximizing the effectiveness of HSIP fund allocation.
- ☐ The policy framework will be developed with the support of TDOT staff.
- □ This policy framework will direct current and future decision makers at TDOT and other agencies in the prioritization of funding.

Study Approach

- □ Developed a framework to identify bicycle and pedestrian high crash locations for safety improvement prioritization focusing on Population, Demographic and Socioeconomic Spectra in Tennessee
- □Research approach comprised in-depth analysis using a combination of existing data, literature review, GIS, cluster analysis, and advanced statistical modeling to examine and identify bicycle and pedestrian high-crash locations.
- □Relevant data from each of the selected study locations was integrated into a Geographic Information System (GIS).
- ☐ The data included crashes, roadway geometry, population, demographics and economic, and traffic.
- □The study used the gathered data and information to develop safety performance functions (SPF) to identify magnitude and characteristics of variables associated with pedestrian and bicycle safety hazardous locations (black spots).
- □ From the SPF, the research developed tool to evaluate the expected number of crashes at block and county levels for given set of population, demographics and socioeconomic data in Tennessee

Data

Three types of data were used;

Crash data

Socioeconomic data

Demographic data

TDOT Crash Database-TRIMS

Socioeconomic and Demographic data

- TIGER Products
- (Topologically Integrated Geographic Encoding and Referencing)
- https://www.census.gov/geo/maps-data/data/tiger-data.html

Crash data

Socioeconomic data

Demographic data

Data

- Obtained from TDOT traffic crash database
- 5 years 2008-2012 data: 5,845 pedestrian crash records
- 5 years 2008-2012 data: 2,185 bicycle crash records
- US census bureau, 2006-2010 America Community Survey
- Block group data for Tennessee
- Income, Car ownership, poverty status, Transport mode to work
- US census bureau, 2006-2010 America Community Survey
- Block group data for Tennessee
- Population counts, age, race

Crash Data Statistics

Year of Crash	Pedestrian	Bicyclist
2008	1091	450
2009	1101	405
2010	1185	385
2011	1241	487
2012	1227	458
Grand Total	5845	2185

L		
Type of Crash	Pedestrian	Bicyclist
Fatal	389	33
Incapacitating Injury	1109	279
Non- Incapacitating Injury	4051	1603
Prop Damage (over)	118	115
Prop Damage (under)	178	155
Grand Total	5845	2185

Transportation Research Center

Spatial distribution of crashes

Variable		Std. Dev.	Min	Max
Population density (1000 per sq. Mile)	1.62	2.53	0.00	89.44
Population below 15 years of age (%)	19.02	7.76	0.00	59.33
Population from 15 to 64 years of age (%)	66.98	8.36	11.80	100.00
Population commuting to work by private cars (%)	95.84	5.81	0.00	100.00
Population commuting to work by walking (%)	0.83	2.89	0.00	100.00
Median household income ("000" \$)	45.42	24.35	0.00	247.36
Housing units with no vehicles (%)	6.94	9.47	0.00	83.97

Cluster Analysis

Transportation Research Center for Livable Communities

TENNESSEE STATE UNIVERSITY

Cluster Analysis

Transportation Research Center for Livable Communities

Where are high risk census block groups?

High crash census block groups High crash census block groups

Where are these clusters?

Transportation Research Center for Livable Communities

Transportation Research Center

Developing Safety Performance Functions (SPFs)

- y_i number of crashes occurring in a certain period at a site i
- λ_i is the Poisson parameter for site *i*, which is equal to site expected number of crashes at a period, $E(y_i)$.
- Poisson assumes the mean =Variance

Poisson

$$P(y_i) = \frac{exp(-\lambda_i) * \lambda_i^{y_i}}{y_i!}$$

Negative Binomial

- For crash data the mean ≠ Variance
- VAR $(y_i) > E(y_i)$ Overdispersion
- *α is* the overdispersion factor
- µ is the mean of crashes

$$P(y) = \frac{\tau(y+\alpha^{-1})}{\tau(\alpha^{-1})\tau(y+1)} \left[\frac{1}{1+\alpha\mu} \right]^{1/\alpha} \left[\frac{\alpha\mu}{1+\alpha\mu} \right]^y$$

$$\mu = E(y_i) = \exp(X_i \beta)$$

Transportation Research Center

Pedestrian Crashes What are the associated factors-Block Group?

Variable	Coefficient	Z	p-value
Population density (1000 per sq. mile)	0.117	7.77	0.000
Population below 15 years of age (%)	-0.008	-2.08	0.037
Population from 15 to 64 years of age (%)	0.014	3.76	0.000
Population commuting to work by private cars (%)	-0.038	-7.12	0.000
Population commuting to work by walking (%)	0.0298	2.34	0.019
Median household income ("000" \$)	-0.0108	-7.34	0.000
Housing units with no vehicles (%)	0.0308	8.86	0.000
Constant	-4.4198	-7.14	0.000
Population	Exposure		
alpha	1.586		

Variable Variable Variable	tactors	S-C	ounty?
Variable	Coefficient	Z	P-value
Population below 15 years of age (%)	-0.0281	-0.91	0.362
Population from 15 to 64 years of age (%)	0.0231	0.91	0.364
Population of White (%)	-0.0461	-2.08	0.038
Population of African American (%)	-0.0368	-1.6	0.109
Population of Hispanic (%)	0.0546	1.64	0.101
Population commuting to work by private cars (%)	-0.0705	-1.13	0.257
Population commuting to work by walking (%)	-0.2909	-1.64	0.102
Median household income ("000" \$)	-0.0025	-1.91	0.056
Housing units with no vehicles (%)	0.0848	2.37	0.018
Constant	1.9170	0.3	0.768
Population	Exposure		
alpha	0.11		

Developed Crash Prediction Model (SPF)

μ=Exp [ln(P) - 0.028A+0.023B-0.046C - 0.037D+0.055E-0.071F-0.291G-0.003H+0.085I+1.917]

Where;

- μ: Number of pedestrian crashes
- P: Population of a County
- A: Population below 15 years of age (%)
- B: Population from 15 to 64 years of age (%)
- C: Population of White (%)
- D: Population of African American (%)
- E: Population of Hispanic (%)
- F: Population commuting to work by private cars (%)
- G: Population commuting to work by walking (%)
- H: Median household income ("000" \$)
- I: Housing units with no vehicles (%)

Prediction accuracy

Integrating SPFs with Access Database

 User friendly: Unlike crash prediction models that are expressed in form of complicated equations and time consuming; this tool simplifies this process.

It is built in form of a database: With huge amounts of data now available, local and national agencies are now building their database.

 It helps users to gain more insight into the relationships between crashes and sociodemographic factors by varying the values of contributing factors.

Flow Chart of the Decision Support Tool

Transportation Research Center

Interface of Decision Support system

Let's look at it

..\TOOL\Decision Support Tool.accdb

Applications?

Conclusions and Recommendations

- Implement design practices that accommodate Pedestrian and bicycle needs;
 - Sidewalks
 - Bike lanes
 - Shared lanes
- ❖Reduce speeds on;
 - Roadways serving as boundaries of Block groups
 Roadways crossing high crash Block groups
 Shared lanes

 - School speed limits*
- ❖Future direction:
 - Consider more variables; Roadway, Vehicle, Driver
 Collect actual pedestrian volumes
 Represent resulting crashes on map

Deliverables

Conference proceedings and presentations

- 1. **Musinguzi, A** and Chimba, D. "Spatial variation in local road pedestrian and bicycle crashes". Presented and published in proceedings of ESRI International User annual Conference, San Diego, CA, 7/21/2015.
- **2. Musinguzi, A** and Chimba, D. "Using Spatial Statistical Tools to correlate Bicycle and Pedestrian Crashes with Sociodemographics". *Presented at "TSU 37th Annual University-Wide Research Symposium, 2015; 4/2/2015"*
- **3. Musinguzi, A** and Chimba, D. "Bayesian logistic regression analysis of socioeconomic and demographic factors and pedestrian crash counts". *Presented at " Southern District ITE Annual Meeting, MS, 4/19/2015"*
- 4. Kidando, E, **Musinguzi, A** and Chimba, D. "Bayesian hierarchical analysis of pedestrian crashes and socio-demographic factors" Presented at the 2nd Summer Conference on Livable Communities, Kalamazoo, MI, 7/23/2015. **Award of best Student poster presentation**
- **5. Musinguzi, A** and Chimba, D. "An Access-Based Decision Support Tool for Assessing Bicycle and Pedestrian Safety". *Presented at "TSU 38th Annual University-Wide Research Symposium, 2016*

Papers under peer review

- 7. Musinguzi, A and Chimba D. "Using kernel density to evaluate dependence of pedestrian crashes on demographic and socioeconomic factors".
- 8. Musinguzi, A and Chimba, D "Adaptive neuro-fuzzy inference system (ANFIS) approach for pedestrian injury analysis".
- 9. Musinguzi, A, Chimba, D and Kidando, E. "A Regression-Bayesian network hybrid approach for pedestrian injury analysis".

