Optimum Bifurcating-Tube Tree for Gas Transport

Tianshu Liu

Department of Mechanical and Aerospace Engineering
Western Michigan University
Kalamazoo, MI 49008
Bronchial Tree as an Engineering Tree Model
Bifurcating Tube Tree Geometry

Objective:

To determine the distributions of the geometrical quantities as a function of the generation number.
Murray’s Law

Minimum Power Principle (Murray, CD 1926):

\[d_n \propto 2^{-n/3} \]

Minimum Resistance (Rashevsky, N 1960)
Minimum Entropy (Wilson, TA 1967)
Minimum Volume (LaBarbera, M 1990)
Measurements of Diameter and Length

\[d_n \propto 2^{-n/2} \]

\[d_n \propto 2^{-2n/16} \]

\[l_n \propto 2^{-n/4} \]
Underlying Physical Mechanisms

(1) Convection Zone

Minimum Power, Resistance and Entropy

(2) Diffusion Zone

Maximum Total Mass Diffusion Rate ?
Max-Min Problem

Cost Function: \[P = \sum_{n=1}^{N} w_n x_n \]

Constraint: \[\sum_{n=1}^{N} x_n^s = B \]

Solution: \[(x_n)_{op} = B^{1/s} w_n^{1/(s-1)} \left(\sum_{n=1}^{N} w_n^{s/(s-1)} \right)^{-1/s} \]
\[n = 1, 2, \ldots, N \]

For \(s > 1 \), Maximum of \(P \);

For \(s < 1 \), Minimum of \(P \).
Diameter Distribution and Maximum Gas Diffusion Rate

Diffusion Mass-Transfer Rate:

\[m_n = D_{\text{diff}} \left(A_{\text{eff}} \right)_n \Delta C_n / h_n \]

\((A_{\text{eff}})_n \) Effective diffusion area

\(\Delta C_n \) Change of gas concentration Across the wall
Relation between Mass Transfer Rate and Volume

The geometrical relations:

\[(A_{\text{eff}})_n \propto V_n^{\alpha D_2/3}\]

\[h_n \propto 2^{-3n/8} V_n^{1/2}\]

The cascade of mass transfer:

\[C_n \propto V_n^{-\gamma} \quad (n > N/2)\]

Diffusion mass-transfer rate:

\[\dot{m}_n = B_1 2^{3n/8} V_n^{1/s}\]

The parameter:

\[s = (\alpha D_2/3 - \gamma - 1/2)^{-1}\]
Maximizing Total Diffusion Mass-Transfer Rate:

\[\dot{m}_T = \sum m_n = \sum w_n x_n \]

Constant Total Volume Constraint:

\[\sum V_n = \sum x_n^s = B_2 \]

where the parameters are

\[x_n = V_n^{1/s} \quad w_n = B_1 2^{3n/8} \]
At the optimal condition,

\[
(V_n)_{op}^{1/s} = B_2^{1/s} \sum w_n^{s/(s-1)} \left(\sum w_n^{s/(s-1)} \right)^{-1/s}
\]

Consistence condition requires

\[
s \rightarrow + \infty
\]

\[
(V_n)_{op} \propto 2^{3n/8}
\]
Diameter Distribution in Diffusion Zone

New law for the diffusion zone:

\[d_n \propto 2^{-3n/16} \]

Murray’s law for the convection zone:

\[d_n \propto 2^{-n/3} \]
Length Distribution, Minimum Weight and Structural Stability

Minimizing total weight

\[W_T = \sum (W_T)_n \]

Constant total surface constraint

\[\sum (W_T)_n^{D_{2/3}} = \text{const.} \]

Structure stability requirement

\[l_n \propto W_n^{1/4} \]
Length Distribution for the Entire Tree

\[l_n \propto 2^{-n/4} \]
Conclusions

Diameter distribution in the diffusion zone:

\[d_n \propto 2^{-3n/16} \]

Length distribution:

\[l_n \propto 2^{-n/4} \]

Bifurcation angle for min power & volume:

\[\phi \approx 75^\circ \]

Bifurcation angle for min drag & surface:

\[\phi \approx 102^\circ \]
Further Comments

- **Tree is not on a plane.**
 Determining rotational angle distribution: a non-trivial geometry problem

- **This work does not attempt to provide a teleological explanation for the physiology of bronchial trees.**