EDMM 5500
ADVANCED PLASTICS PROCESSING
COURSE SYLLABUS

2018-2019 Catalog Data:
Review of optimum machine components and systems. Identification of key process variables within injection molding and extrusion systems. Discussion of the causes of process instability. Determination of the process capability within injection molding and extrusion systems.

Prerequisites by topic:
1. Knowledge of the elements of plastication
2. Basic understanding of plastics equipment, tooling and process
3. Understanding of the relationship between resins, additives and the extrusion and injection molding processes
4. Ability to correctly differentiate independent and dependent variables

Note: It is the responsibility of each student to correct any deficiencies that they may have in prerequisite information. This will be assisted by taking the pretest and completing the corresponding reading assignments attached to questions missed on the test. In addition, other readings may be necessary. It is also recommended that students spend time in a plastics processing plant to observe elements of the injection molding process and tooling that are not well understood.

Course Coordinator:
Dr. Paul Engelmann, Professor, Engineering Design, Manufacturing and Management Systems. F-214 Parkview, (269) 276-3348, paul.engelmann@wmich.edu

Members of the Instructional Team:
Jay Shoemaker, (269) 276-3347, Jay.Shoemaker@autodesk.com, Office F-219
Russ Malek, (616) 635-1349, russ.malek@gmail.com

Objectives:\n
At the end of the semester the student should be able to:

<table>
<thead>
<tr>
<th>Course Objectives</th>
<th>Performance Criteria (department)^ Course</th>
<th>ABET/ETAC Outcomes^</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand the relationships between part design, mold design, processing and the product.</td>
<td>(D4) Describe the interrelationships between part & mold design attributes and the resulting product characteristics.</td>
<td>d</td>
</tr>
<tr>
<td>2. Consider how process may be the root cause of related material failures.</td>
<td>(F1) Propose likely areas of process related product failure, based upon the material composition of the part.</td>
<td>f</td>
</tr>
<tr>
<td>3. Understand the relationship between key intermediate process variables and product consistency.</td>
<td>(K3) Explain how the key intermediate process variables control the quality and consistency of plastics products.</td>
<td>k</td>
</tr>
</tbody>
</table>
4. **Identify process system design characteristics most likely to enhance product stability.**

(D4) Describe changes to a process system that would enhance product stability.

5. **Differentiate among, independent process variables, dependent process variables, intermediate dependent process variables, and dependent product variables.**

(C1) Categorize specific process variables as independent, dependent process, intermediate dependent process, or dependent product.

6. **Identify logical variables for a given process problem**

(F5) List a group of variables that are both logical and independently testable for a specific process problem.

Performance Criteria

EDMMS performance criteria may be found at: http://www.wmich.edu/EDMMS

ABET/ETAC Outcomes

Outcomes may be found at http://www.abet.org/

* Results tracked in ABET course notebook

Lecture Topics:

Week 1
- Introductions and background Pretest
- Discussion of research projects
- Classification of variables

Week 2
- MLK Observance

Week 3
- Research projects
- Relationship of water and plastics
 - Chemistry & physics
 - The drying process
 - Performance of the molded product

Week 4
- Resin additives
 - Coloring plastics (visual issues, processing and property changes)
 - Fillers & reinforcements
 - Defining product failures (visual, dimensional, structural, functional)

Week 5
- *Research proposal due*
- Research projects – SPE “Write Now”
- Effects of polymer structure and part design on processing
 - Review of design rules
 - Proof of uniform wall stock rule of thumb
 - Comparison of amorphous vs crystalline materials in PVT fundamentals

Week 6
- “Research beyond Google”

Week 7
- Test 1
- Critical intermediate “Plastic Variables” - *(Bozzelli - “How to track a perfect part”)*
 - Polymer viscosity
 - Temperature of the polymer
 - Pressure of the polymer
 - Cooling rate of the polymer

Week 8
- *Research bibliography due*
- Impact of mold design on plastic pressure
- Midterm review
Week 9 Cooling – the big picture (Engelmann & Dealey “Mold Design Guidelines”)
Mold cooling system design
Towers, chillers & pumps
Water related issues, filters & treatment

Week 10 Test 2
Defining and understanding the molding/processing window
Selection of variables in plastics processing

Week 11 Tying it all together: Plastics part and mold design
Increase the likelihood of a stable molding process
Reducing product faults, failures and rejections

Week 12 Simple test methods to identify common plastics

Week 13 Research paper due
Strategies to setup the process for a given mold

Week 14 Non-welded assemblies
Snap-fits & fasteners
Summary & Final exam review

Week 15 Final Exam:

Evaluation:
1. Research Topic Proposal 4%
2. Bibliography 4%
3. Research Paper 28%
4. Participation 5%
5. Test 1 16%
6. Test 2 16%
7. Final 27%

The grading scale for this course is as follows:
93-100 = A 83-88 = B 73-78 = C 63-68 = D
89-92 = BA 79-82 = CB 69-72 = DC <62 = E

Usage of Electronic Devices during Class
Cell phones are to be turned off or set to vibrate. They are to be placed either at the front of your desk or in a back pack or purse. Surfing the web, sending email, text messaging, talking on a cell phone, listening to music or podcasts in class is prohibited.

Expectations for Attendance:
Excused Absences
Each student is allowed to miss 1 week of class without being penalized. This excused absence is provided as a buffer against family problems, weather, job, and class conflicts. In the case of illness, WMU does not wish to have any student attend class if they suspect that they have the flu. Please email your instructor immediately to determine how assignments and tests will be handled.

The excused absence in no way relieve the student of any class responsibilities. The student is responsible for all missed materials and should review other class members’ notes for lectures and demonstrations missed. Any assignment due on the day of an excused absence is considered due at the beginning of the next class period attended.
If sickness or other unforeseen circumstances prevent attendance, the student should email his/her instructor at the time of the absence.

Unexcused Absences
If more than 1 week of class is missed, a doctor's note or other documentation is required or the absence will be considered unexcused. The attendance grade will be reduced for each unexcused absence.

Late Assignments
Late assignments will be docked a substantial amount of if they are accepted at all. An assignment over 1 week late will require Dr. Engelmann to determine if the assignment will be accepted and what additional penalty will be applied.

Academic Honesty
Experiments are best done as a group. Write-ups will be done as an individual. Failure to observe this directive will result in the penalties outlined in the University Policy on Academic Honesty.

“Students are responsible for making themselves aware of and understanding the University policies and procedures that pertain to Academic Honesty. These policies include cheating, fabrication, falsification and forgery, multiple submission, plagiarism, complicity and computer misuse.” The academic policies addressing Student Rights and Responsibilities can be found in the Undergraduate Catalog at http://catalog.wmich.edu/content.php?catoid=24&navoid=974

If there is reason to believe you have been involved in academic dishonesty, you will be referred to the Office of Student Conduct. You will be given the opportunity to review the charge(s) and if you believe you are not responsible, you will have the opportunity for a hearing. You should consult with your instructor if you are uncertain about an issue of academic honesty prior to the submission of an assignment or test. In addition, students are encouraged to access the Code of Honor, as well as resources and general academic policies on such issues as diversity, religious observance:

- Office of Student Conduct www.wmich.edu/conduct
- Division of Student Affairs www.wmich.edu/students/diversity
- Registrar’s Office www.wmich.edu/registrar and www.wmich.edu/registrar/policies/interfaith

Academic Accommodation:
Any student registered with Disability Services for Students (DSS) who would like to discuss accommodations for this class should contact the instructor of record in a timely manner. Students with documented disabilities who are not registered with DSS should call the office at (269) 387-2116 or visit www.wmich.edu/disabilityservices. Students cannot request academic accommodations without scheduling an appointment and meeting with a DSS staff member. If a student does not register with DSS, their academic accommodations/modifications cannot be executed.

Research:

a. This research is designed to allow the student to participate in a comprehensive information gathering exercise. A group of 2-4 people shall work on each project (including the written portion). The area of study must constitute a part of plastics processing technology and must be approved by the instructor.

b. The maximum paper length is five (5) pages, including illustrations, in accordance with SPE format.

c. Four (4) to six (6) illustrations are to comprise the last one (1) to two (2) pages of the paper.

d. A minimum of six (6) references must be cited in the paper.
e. At least half of the sources for this research paper must come from other sources than the web. Use of the Engineering Index and on-line indices will be necessary to provide the depth and breadth of research materials required for this report. Other sources such as master’s theses and doctoral dissertations may be reviewed as part of this work.

f. A comprehensive appendix containing all relevant supporting data or information to support the work shall be submitted in a 3-ring binder along with the paper.

g. A written log of project activities for each member of the research team will be graded.

Prepared by: Paul Engelmann Date: March 2018