BACKGROUND

2

Steps in Negotiating an Intersection

- Detect the street
- Find the crosswalk location
- Aligning to cross with the correct heading
- Identifying the traffic control
- Deciding when to cross
- Maintaining a correct heading while crossing

4

Conceptualization of the Study

- Making information about individual intersections and crosswalks readily available to blind pedestrians, either as part of accessible GPS devices or some type of route planning program or wayfinding device
- Database was not designed to be device specific.

Research Questions

- Does availability of descriptive information about complex intersections enhance the safety and efficiency of crossing by blind pedestrians?

Methods

7

Intersection One

Intersection Two

Participants

- 22 totally blind adults
- Received formal orientation and mobility training
- Experienced travelers who generally feel confident crossing unfamiliar signalized intersections

Intersection Database

Category	Sample of Included Information
Intersection shape and size	- Lanes - Legs - [Right angle/Skewed] intersection - Channelized right turn lane - Two-stage crossing - Median
Crosswalks and curb ramps	- [Diagonal/Separate] ramp - Crosswalk [parallel to a street/perpendicular to a street/skewed] - Detectable warnings

Intersection Database

Category	Sample of Included Information
Traffic signals and control	- Actuated signal - Split phase signalization - [Protected/permissive] left turns - Pushbutton
Accessible pedestrian signals	- Locator tone - Tactile arrow - Audible beaconing

Example of Information Provided to Participants

General Description: "Halsey, east/west, 4 lanes; 42 ${ }^{\text {nd }}$, north/ south, 2 lanes. Right angle, 4 legs. Actuated. Split phasing on $42^{\text {nd }}$. Some detectable warnings, pushbuttons, and APS. South leg $42^{\text {nd }}$ transit station driveway, buses travel counterclockwise loop."
Specific example for Crossing 42 ${ }^{\text {nd }}$, on the south crosswalk (traveling from southeast to southwest corners) : "Diagonal ramp. Detectable warnings. No pushbutton. No APS. 3 lanes. Crosswalk ends on sidewalk between Halsey and pavement of bus turnaround loop."

Experiment Procedure

- Participants were informed that they would be crossing at three of the intersection's crosswalks, starting at random distances between 25 and 50 feet from the crosswalk.
- A participant's task was to cross as if you were unaccompanied and on your way to an appointment.
- The relevant general intersection and crossing information was played twice on the BrailleNote and participants were allowed to ask for definitions of terms as needed.
- Participants were asked to take as much time as they wished to find the crosswalk and to cross.

Outcome Measures

- Finding an appropriate start location
- Aligning to cross with the correct heading
- Finding and using the pedestrian pushbutton when one was available
- Starting to cross at an appropriate time
- Traveling in an appropriate direction
- Traveling within the crosswalk
- Completing the crossing within the crosswalk
- Completing the crossing before Don't Walk

Predictor Variables

- Whether the intersection database information was provided or not
- Whether APS was present or absent for a given crossing
- Whether there were separate ramps or a single diagonal ramp

Analyses

- Generalized Estimating Equation (GEE) procedure was used to test our hypotheses (Hanley, Negassa, Edwardes, \& Forrester, 2003; Hubbard et al., 2010).
- A significance level of .05 was used for all statistical tests.
- All statistical analyses were conducted with SPSS version 25 and R.

Results

18

Finding the Crosswalk (Correct Start Location)

- Predictor variables:

1) Database Information
2) APS

- Neither database information ($p=.589$) nor APS ($p=.635$) had a significant effect on the percentage of successfully finding the correct start location.

Using Correct Pushbutton

$p=.005($ odds ratio $=5.73)$

Alignment with Correct Heading

$p=0.012$ (odds ratio $=3.29)$

Initiating within Crosswalk Lines

- Predictor variables:

1) Database Information
2) Type of ramp (separate vs. single diagonal)

- Neither database information $(p=.928)$ nor ramp type ($p=.207$) had a significant effect on the percentage of crossing initiation within crosswalk lines.

Completing within Crosswalk Lines

$$
p=.003 \text { (odds ratio }=8.83)
$$

Confusing Median for Opposite Curb

$N=14$

DISCUSSION

26

Discussion

- Key findings
- Provision of database information helped the participants use the pushbutton, initiate crossing during the Walk interval, and avoid confusing a median as the opposite curb.
- Separate ramps help blind pedestrians align themselves with correct heading and the presence of APS helps them complete the crossing within crosswalk lines.

Practical Implications

- Use of accessibility features
- Initiate crossing without delay
- Avoid confusion when there are unusual features such as a median
- Physical features help aligning with the correct heading and completing crossing within crosswalk lines.

Acknowledgement

- This project was supported by the TRCLC grant "Intersection Database Enhances Blind Pedestrians' Access to Complex Signalized Intersections."

