Better Long Cane Design and Biomechanics for Blind Cane Users: Mobility for People with Visual Impairments

Dae Kim, Ph.D., Professor
Robert Wall Emerson, Ph.D., Professor
Department of Blindness and Low Vision Studies
Koorosh Naghshineh, Ph.D., Professor
Department of Aerospace and Mechanical Engineering
Orientation and Mobility (O&M)

- **Orientation**: knowing where you are and which direction you are facing
- **Mobility**: getting from one place to another safely and independently
Component of a comprehensive rehabilitation training designed for individuals with vision loss

Aim of the training is to help the individuals travel more safely and independently in their desired environment, often using a long cane or a dog guide

O&M training often covers topics such as:

- How to stay oriented using non-visual landmarks and clues
- How to use a long cane
- How to cross streets safely and independently
- How to use public transit systems
Cane Techniques

- Two-point touch technique
- Constant contact technique
Drop-off Detection

- Critical for blind travelers to detect drop-offs reliably
 - Curb
 - Uneven surfaces
 - Pothole, sunken slab
Obstacle Detection

- Critical for blind travelers to detect obstacles reliably
 - Trip over obstacles (construction cones, bricks, etc.)
 - Collision with obstacles (sign posts, etc.)
Factors Related to Drop-off Detection

- Cane-use Biomechanics Factors
 - Type of Cane Technique
 - Cane-swing-arc width

- User Characteristics
 - Age of Cane User
 - Age at Onset of Visual Impairment
 - Cane Use Experience

- Cane Design Factors
 - Type of Cane Tip
 - Cane Length
 - Cane Weight

- Environmental Factors
Factors Related to Obstacle Detection

Obstacle Detection

Cane-use Biomechanics Factors
- Type of Cane Technique
- Cane–wing-arc width

User Characteristics

Cane Design Factors
- Cane Tip Shape
- Cane Length

Environmental Factors
Methods
(Drop-off Detection Studies)
Recruitment Criteria

- Legal blindness with no other disabilities
- Familiarity with both techniques
- At least one month of cane training
- 13-16 cane users participated in individual studies
Drop-off Detection Experiment

- Test site
 - 8-foot-wide concrete hallway in CHHS building basement
- Sleep-shades and headphone set
Apparatus

Participant Approaching the Drop-off on the 32-foot-long Walkway Used in the Study
Experiment Procedure

- Starting point randomization
- 64-96 trials per participant
- Block randomization to prevent order effect
- Block randomization to randomly select drop-off depth for each trial
Key Findings
(Drop-off Detection)
Key Findings

- Drop-off detection performance (Significant factors)
 - Constant contact (CC) better than two-point touch (TT)
 - CC’s advantage is larger for less experienced
 - Younger cane users were better
 - Individuals with earlier-onset VI were better
 - Heavier cane was better
 - Standard length was better than extended length (16” longer)
 - Standard cane-swing arc width was better than extended swing arc width (a foot wider on each side)
Key Findings

- Drop-off detection performance (Factors that were NOT significant)
 - Cane shaft rigidity
 - Cane tip (marshmallow tip vs. marshmallow roller tip)
Methods
(Obstacle Detection Studies)
Recruitment Criteria

- The same as drop-off detection studies
Obstacle Detection Experiment

- Test site
 - WMU’s CHHS building 4F hallway
- Sleep-shades and headphone set
Apparatus

- Cylindrical objects of different sizes (diameters of 2”, 6”, 10”, and 14”) and heights (1”, 3”, 5”, and 7”) were created with Styrofoam and linoleum.
Apparatus

- Objects presented either at the midline of the walking path or slightly off to the side following a randomized schedule.
- A 20-foot-long rail (3 feet high), built with PVC pipes, was placed beside the walking path for participants to trail with the free hand.
Experiment Procedure

- Starting point randomization
- 128-192 trials per participant
- Block randomization to randomly select obstacle size and height for each trial
Key Findings
(Obstacle Detection)
Key Findings

- Obstacle detection performance
 - CC better than TT for short obstacles
 - Bundu basher tip was better than marshmallow tip
 - Cane length and cane swing arc width didn’t have a significant effect
DISCUSSION
Discussion

- One of the most significant and prevailing findings
 - Presence of CC’s advantage over TT in drop-off detection
- Particularly noteworthy is large effect size
 - 50% threshold: half as large
 - Large drop-offs
 - TT: missed 1 in 15
 - CC: missed less than 1 in 100
Discussion

- Surprising finding
 - Failure to detect even tall obstacles at least 1 in 3 times
 - Consistent with Uslan (1978)’s finding (68.9% path coverage rate)
 - Bundu basher tip somewhat improves the obstacle detection rate (from 35% to 25% misses)
 - Raises a question of whether we should modify the current cane techniques
Current/Future Studies

- Ecological validity (real-world testing)
- Surface texture discrimination
Acknowledgement

- Dr. Rob Wall Emerson (WMU)
- Dr. Koorosh Naghshineh (WMU)
- Grad assistants and undergrad students
- Study participants
Published Articles

Published Articles

