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1 Introduction and Background 

1.1 Research background and problem statement  

 

Cycling is increasingly becoming an important mode choice for leisure and work trips 

(McKenzie, 2014; Statistica, 2016). The benefits of cycling go beyond moving people 

from origin to destination to improving riders’ health and reduce motor vehicle congestion 

and greenhouse emissions (Cupples and Ridley, 2008). Although many transportation 

agencies have put more efforts on improving cycling environments, limitations on 

methodologies used to estimate bicyclist exposure (i.e., volume) impact the decision 

process. Measuring bicycle exposure is very important for planning bicycle systems as 

well as ensuring safety of such systems. Traditional methods for measuring bicycle 

volume have been proven to be challenging and costly. For example, while more 

transportation agencies are installing permanent count stations (Griffin et al., 2014) which 

provide excellent data on ridership, these count stations lack spatial details (Jestico et 

al., 2016). With limited data collected manually or using sensors, several researchers 

have attempted to develop models for estimating bicycle volume (Buckland and Jones, 

2008; Griswold et al., 2011; Molino et al., 2009; Oh et al., 2013). However, such models 

are less accurate due to limitations in spatial coverage and detail of the data collected 

manually or using sensors.  

Crowdsourced data of cycling activities can be a good source of bicycle exposure 

measure. Crowdsourced data are collected using GPS-enabled smartphones through 

fitness apps allowing cyclists to track their routes (Jestico et al., 2016). Data collected 

using fitness apps have the potential to supplement other data collected through 

traditional methods to provide spatially detailed data for estimating bicycle exposure. 

However, comprehensive research on how to integrate crowdsourced data with 

traditional data is lacking. Understanding opportunities and limitations associated with 

crowdsourced data is necessary to guide integration of the data.  For example, one major 

limitation of crowdsourced data is the sample bias since those being counted have to 

opt-in to the program and have to own a smartphone and remember to use the app on 

each trip (Ryus et al., 2016). As a result, the volume collected through crowdsourcing 
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can be used to establish minimum and potentially biased volumes at the location. In order 

to adjust this volume to total volume, additional information such as the proportion of 

cyclists using the app is needed. 

    

1.2 Research Goals and Objectives  

 

The primary goal of this study was to explore opportunities and document limitations 

associated with integration of crowdsourced cycling data with data collected using 

traditional methods to accurately estimate the bicyclists’ exposure measure. Specifically, 

the research had the following main objectives:  

[1] Correlate/compare crowdsourced data volumes with manual counts (ground truth)  

and relate it to the proportion of cyclists using the crowdsourcing technology.  

[2] Use crowdsourced data to correlate and estimate bicycle volumes with 

infrastructure and demographics characteristics.  

 

1.3 Structure of the report 

Figure 1.1 shows the general workflow of this research that was used to achieve the 

research goals and objectives. The workflow summarizes how each of the collected data 

was used in the analysis.  The research begins by reviewing relevant past studies in 

Chapter 2. The site selection process and types of data that were collected is covered in 

Chapter 3. The analyses of survey data and the estimation of bicycle exposure are 

covered in Chapter 4 and Chapter 5, respectively. Conclusions and recommendations 

are documented in Chapter 6. 
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Figure 1.1  Research organization 
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2 Literature Review 

2.1 Crowdsourcing as a term 

The term crowdsourcing was coined by Jeff Howe as an act of an institution to outsource  

some of its functions to a large network of people through an open call (Howe, 2006). 

Crowdsourcing as a term varies across different disciplines based on its application. 

Estellés-Arolas and González-Ladrón-De-Guevara (2012) came up with an integrated 

definition of crowdsourcing based on past literature. They recommended a definition of 

crowdsourcing as “type of participative online activity in which an individual, an institution, 

a non-profit organization, or company proposes to a group of individuals of varying 

knowledge, heterogeneity, and number, via a flexible open call, the voluntary undertaking 

of a task.” The use of crowdsourcing for a given field is mostly online-based, uses open 

call, clearly define the crowd and the goal of the task. Crowdsourcing has now attracted 

a lot of attention as it provides rapid and cheaper means of collecting information from a 

dispersed group of people (Misra et al., 2014). It can be used by organizations to collect 

data that were expensive to obtain using internal organization expertise. Also, it has been 

used to obtain information of superior quality and quantity than those provided by 

professions in the industry (Barbier et al., 2012). 

In the planning of active transportation, crowdsourcing offers a wide range of 

perspectives, data timeliness and direct communication between planners, stakeholders 

and public at large. Crowdsourcing can be integrated into various active transportation 

projects such as bicycle master plan, bicycle share maintenance and planning, pedestrian 

master planning, mobility element performance measures, non-motorized access 

improvement, bicycle and pedestrian circulation studies, bicycle sharing programs and 

campus plans. There are various crowdsourcing data tools and sources that can be 

incorporated in active transportation initiatives. These data sources may take a form of 

big data, open data, and civic technologies (Smith, 2015).  

Crowdsourced data in active transportation exist in different types which are in-situ 

data, thematic data, thumbtack data and spatial inventory data. Figure 2.1 provides 

example of crowdsourcing platforms. In-situ data such as Strava and Moves offers real-

time geospatial information. Thematic data are usually aggregated in a given 

geographical area such as American Community Survey and National Household Travel 
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Survey. Thumbtack data offers points locations on a map each with a given attribute. 

Spatial inventory data such as OpenStreetMap and Cyclopath comprise of the digital 

representation of ground features (Smith, 2015).  

 

 

Figure 2.1: Example of crowdsourcing platforms -Strava (Left) and OpenStreetMap 
(Right) 

Sources (www.strava.com/heatmap, www.openstreetmap.org, Accessed April 2018) 

 

2.2 Advantages of crowdsourced data in active transportation 

The introduction of crowdsourced data in active transportation planning has offered a 

unique platform for collecting non-motorized activities. The crowdsourced data can be 

used as an effective way of offsetting limitations which are inherent in the traditional data 

collection techniques. Conventional data collection strategies lack spatial and temporal 

granularity  when estimating the bicycle demand (Conrow et al., 2018a; Musakwa and 

Selala, 2016). Data collected from retrospective surveys and other conventional methods 

are usually available in an aggregated format and therefore difficult to conduct spatial-

temporal analysis (Leao et al., 2017). The conventional data sources have also been 

http://www.strava.com/
http://www.openstreetmap.org/
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found to be labor intensive which increases the overall cost of acquiring and evaluating 

the data (Sanders et al., 2017). Also, a time lag has been observed from collection of 

bicyclists’ spatial-temporal activities to dissemination of information to the targeted 

audiences (Whitfield et al., 2016). Unlike traditional method, crowdsourced information 

can be disseminated to the intended audience with a high degree of spatial granularity 

(Whitfield et al., 2016). 

In the planning for active transportation, crowdsourced data can provide real-time 

monitoring of cyclists in time and space (Jestico et al., 2016; Selala and Musakwa, 2016). 

This offers myriads of proactive approaches in combating high-risk areas for cyclists and 

making proactive decisions on where and what type of facilities need improvements. This 

could ultimately maximize the potential benefits in terms of increased ridership, safety 

and comfort (Blanc and Figliozzi, 2016). Crowdsourced data can also be used to develop 

robust spatial-temporal exposure measures which are essential in quantifying  risks that 

face cyclists at different roadway locations (Sanders et al., 2017).  

The online web-based crowdsourcing tool has made community outreach 

programs much easier than ever before as it has the ability to collect user inputs in a large 

spatial extent and within a short period of time (Piatkowski et al., 2015). For example, 

Delaware Valley Regional Planning Commission (DVRPC) used crowdsourced data in 

the process of establishing bicycle level of service in Mercer County, New Jersey 

(Krykewycz et al., 2012). This parameter was essential in formulating a new bicycle 

master plan. The initial bikeability dataset was improved successfully by using a web-

based public and stakeholder outreach program.  

 

2.3 The use of crowdsourced cycling data in studying cyclists’ behavior 

Researchers have used crowdsourced cycling data to study different aspects of bicyclists’ 

travel behavior. Crowdsourcing cycling activity data is increasingly becoming cheaper 

than conventional data collection means as the result of the proliferation of smartphone 

use and low-cost GPS devices.  Most of the studies that have used crowdsourced cycling 

data have focused on the spatial-temporal analysis of cyclist activities at a given 

geographical unit. Some studies have gone further by integrating crowdsourced data with 

the traditional counts and retrospective surveys to estimate bicycle demand with the 
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smallest spatial unit being a road intersection or a road segment. Presented herein is the 

review of studies that have explored various ways in which crowdsourced data can be 

used to study bicyclist behavior. 

Tracking bicycle activities in space and time is essential for active transportation 

planners as they can allocate limited resources where they are mostly needed. 

Crowdsourcing of cycling activities using volunteered geographic information (VGI) have 

opened cheaper and rapid alternative for tracking cyclists’ activities in a larger spatial 

scale. VGI involve the use of digital tools such as smartphones and web-based 

applications to collect, analyze and share spatial information volunteered by individuals 

(Ferster et al., 2018). Sultan et al. (2015) explored the use VGI data-OpenStreetMap 

(OSM)- for analyzing the bicycle road network in Amsterdam, Netherlands and 

Osnabrück, German.  The open street map contains spatial data on routes where cyclists 

are allowed or prohibited to cycle. The authors were able to compute the percentage 

share of bicycle usage for each road type based on total road length. The results showed 

that majority of the cyclists used roadways that were designated for pedestrians and 

motorized users. The study demonstrated the usability of VGI from OpenStreetMap 

despite its known setbacks such as lack of completeness and homogeneity.  

In another study, Norman et al (2019) used a fitness tracking application-

MapMyFitness to understand how the trail within the reserves are used by mountain 

bikers, runners and walkers. The VGI from MapMyFitness app was used to supplement 

existing route data to predict relative popularity and percent composition of mountain 

biking, running and walking for each trail. The results showed that mountain biking was a 

more popular activity on the trails followed by walking. Also, more recreational activities 

(biking, walking and running) occurred more frequently during weekends compared to 

weekdays. 

The cycling data obtain from VGI smartphones apps can also be used to monitor 

aberrant riding behaviors. Dhakal et al., (2018) used the data obtained from a smartphone 

application-CyclePhilly to investigate factors that influence wrong-way riding of cyclists in 

Philadelphia. The commuters riding trips were associated with high likelihood of wrong-

way riding while road with bicycle facilities such as shared lane markings, and buffered 
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lane reduces the wrong-way riding behavior. Further, the odds of wrong-way riding 

behaviors were high for longer trips which had more likelihood for wrong-way riding.  

In Sydney, Australia, Leao et al (2017) investigated factors that promote bicycle 

ridership using crowdsourced cycling tracking application-RideLog. The RideLog app 

comprises of crowdsourced information such as road slope, cycling infrastructure, the 

proximity of the location to parks or coasts and commercial centers. Variables that were 

found to significantly increase ridership was the proximity of cycling tracks to parks and 

coastal areas and proximity of the location to the commercial centers.  

In San Francisco, California, Hood et al (2011) developed a GPS-based bicycle 

route choice model. Infrequent bicycle users were observed to prefer riding on a road with 

bicycle lane while steep slopes were avoided by women and cyclists on commute trips.  

In Dresden, German, Fröhlich et al., (2016) developed an app-BikeNow which 

uses traffic management system to inform cyclists on next green light phases of traffic 

lights along the track of cyclists and provides a suggestion to a cyclist to either keep or 

change the current speed. Such kind of information to the cyclists is expected to reduce 

waiting time at red traffic lights and increase overall riding comfort. In return, cyclists will 

be motivated to share their spatial-temporal data. The data can then be used in 

measurement of quality of bicycle traffic and bicycle infrastracture, and identification of 

high risk intersections. 

 Several studies have utilized Strava Metro as the crowdsourced data source for 

studying spatial-temporal bicyclist activities. Strava provides an anonymized and 

aggregated data package known as Strava Metro. The Strava Metro data has been 

established to help community in making informed decisions in construction, modification 

and maintenance of bicycle and pedestrian facilities. Heesch and Langdon (2016) utilized 

Strava data to evaluate the change in cycling behavior associated with infrastructural 

changes. The study found that GPS tracking data obtained from Strava app can be used 

to quantify the short-term changes in cycling near the area where there was an 

infrastructure improvement. Also, the authors observed a large variation in number of 

cyclists using the Strava app at different locations. Therefore the comparison of results 

across multiple locations was not recommended as it could have led to errorneous 

conclusions.  Strava data can be triangulated with other available sources used for 
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monitoring cycling activities to adjust for the differential use of Strava app across multiple 

locations.  

In another study, Musakwa and Selala (2016) used Strava data to study cycling 

trends and patterns in Johannesburg, South Africa. Strava Metro was preferred data 

source as it was available for the whole city. The analysis involved studying the trends of 

bicycle trips per month and further subdividing the bicycle trips by hour. Also, comparison 

of trends was conducted by the recreational and commuting trip purposes. A similar study 

was conducted by Griffin and Jiao (2015) in Travis County, Texas. Strava Metro data was 

used to determine typical areas that bicyclists will likely ride for fitness purpose based on 

residential and employment density, land use, presence or absence of bicycle facility and 

road terrain. Strava data was found to provide useful information that can be integrated 

into the multi-modal planning and health assessment studies.  

In Oregon state, USA, Strava data was been used to understand cycling patterns 

at the macro level by seasons, day of the week, time of the day and trip purpose 

(Brandway et al., 2014). At the street level, the disaggregate analysis of bicycle patterns 

provided insights on where, why and when cyclists ride. For example, by using Strava 

Metro data, planners identified locations where cyclists prefer to take shortcuts and 

cyclist’s stress level while sharing a space with other road users.   

 Jestico et al. (2016) used crowdsourced data to quantify and map spatial and 

temporal variations of cyclists’ activities in Victoria, British Columbia. The analysis 

encompassed the comparison of am-peak and pm-peak manual cyclist counts and 

crowdsourced cyclists’ counts. Strava data was found to have a good representation of 

cyclists’ activities in urban areas and can be used to supplement traditional cyclist counts 

in estimating cyclists’ demand.  

A study by Boss et al. (2018) used Strava data to monitor the spatial change of 

cycling pattern before and after the construction of new infrastructure. By using the Strava 

data, the authors were able to detect the change in ridership at locations where the 

construction or temporary closure of cycling infrastructure occurred and spillover effect 

on the nearby locations. The results demonstrated the usability of Strava in performing 

city-wide analysis due to infrastructural changes.  
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McArthur and Hong (2019) used Strava Metro commute trips and Origin-

Destination (OD) table of commute trips to understand the pattern of cyclists activities in 

Glasgow city, Scotland. The Strava link flow was used to locate the most popular links 

used by cyclists. The OpenStreetMap and Strava OD link flow were used to estimate the 

expected link flows based on the All-or-Nothing shortest route trip assignment approach. 

Using the difference between observed and modeled flows, it was possible to identify the 

most popular routes and unpopular routes. The unpopular routes are the ones that had 

lower observed flow that would have been expected if the commuters were opting for the 

shortest routes. 

Several studies have compared crowdsourced data with conventional bicycle 

counts in studying bicycle trends. These types of studies primarily focus on identifying 

and quantifying samples’ representativeness of crowdsourced data. Conrow et al. (2018) 

compared the spatial pattern of crowdsourced  bicycle count data and  conventional 

bicycle count data for the city of Greater Sydney, Australia. The study investigated the 

representativeness of crowdsourced data on bicycle ridership. Both data sources were 

found to have higher ridership proportion near the central business districts and other 

areas where bicycle infrastructures were likely be present. 

Revealed preference reported by users are more reliable than stated preference 

in active transportation planning. Reported state references collected through survey and 

other conventional means usually have uncertainty on whether correct responses are 

provided by the participants answering hypothetical questions (Assemi et al., 2015). 

Surveys have been used widely to obtain bicyclists’ opinions based on their prior 

experiences when using a given roadway or bicycle facility. Crowdsourcing can be used 

as the platform for gathering real-time operational and safety concerns related to non-

motorized facilities. A mobile or web-based online application can allow road users to 

express their opinions and concerns in real time.  

Assemi et al (2015) evaluated the usability of crowdsourced tool to capture 

revealed preference. The authors used Amazon Mechanic Turk and Advanced Travel 

Logging Application for Smartphones II (ATLAS) as the crowdsourcing platforms. 

Participants were asked to state their trip purposes and GPS locations of their trips. The 
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preliminary results indicated the possibility of using crowdsourcing platforms for collecting 

revealed preferences from the population.  

A more practical study was conducted by Blanc and Figliozzi (2016) using a 

smartphone application (ORcycle) developed by the Oregon Department of 

Transportation to gather information pertaining to ridership and revealed preferences. 

Bicyclists were asked to score different roadway bicycle facilities based on the level 

comfort and safety that they experience while riding on those facilities. The data was then 

used to model the reported cyclists’ comfort level. Factors that were found to decrease 

cyclists’ stress include the provision of bicycle boulevard and separated bicycle path. The 

authors further demonstrated how these factors can be promoted to increase ridership. 

Crowdsourced data which comprises of public ideas and preferences has also 

been used to investigate various ways of improving bike sharing systems. Piatkowski et 

al (2015) investigated the usability of community feedbacks via online crowdsourcing tool 

to improve the distribution of bicycle sharing stations.  Four cities which have bicycle 

sharing programs that incorporate web-based community outreach were used in the 

study. The cities were Philadelphia, Pennsylvania; Chicago, Illinois; Cincinnati, Ohio; and 

Portland, Oregon. The number of proposed bike sharing stations via crowdsourcing was 

found to be significantly affected by travel mode to work, race, and ethnicity. Census block 

groups with a higher number of people cycling and walking were associated with higher 

number of proposed bike sharing stations. A similar study was also conducted in 

Cincinnati’s Ohio (Afzalan and Sanchez, 2017). The study focused on the use of 

crowdsourced information to augment citizens’ participation in selecting desired locations 

for the bike sharing stations. Further, the data was used to forecast expected demand, 

cost and revenue. Organizational factors that were found to affect the utility of 

crowdsourced information include the capability of organization to analyze crowdsourced 

data, the perception of planners about the value of the crowdsourced data and the extent 

to which organization facilitate citizens engagement. 

 In another study, Wu and Frias-Martinez (2015) used the crowdsourced approach 

to improve the accuracy of bike travel time provided by Google application for Washington 

D.C. bike sharing system. By accounting for slope and trip distance, they developed a 

crowdsourced predictive model that improved the accuracy of Google’s biking time by 5 
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percent. The ground truth for  the model validation was the log data collected each time 

a user rented a bicycle.  

Crowdsourced data sources can be used to supplement traditional counts in the 

estimation of bicycle volume.  Hochmair et al. (2016) estimated the commuting and non-

commuting bicycle trips as bicycle kilometer traveled (BKT) using Strava Metro data as 

one of the explanatory variables. Strava Metro bicycle counts were found to be useful in 

estimating number of trips by purpose and time of day because of its spatial and temporal 

granularity. Weekday and weekend models that included Strava Metro data as one of the 

explanatory variable had better performance than models that excluded Strava Metro 

data. A similar approach was used by Sanders et al (2017) to estimate pedestrian 

exposure for the city of Seattle, Washington. The addition of Strava Metro data as one of 

the explanatory variables in the model increased the explanatory power of the model from 

57 percent (Pseudo R2=0.57) to 62 percent (Pseudo R2=0.62). Further, it reduced the 

complexity of the model which is an essential factor for model transferability to other 

similar locations. In another study, Haworth (2016) estimated the bicycle flow in urban 

areas using Strava data with emphasis on investigating its representativeness and 

potential bias. The estimated flows using Strava data were compared with the London 

cycle census data (LCC) while controlling for road type, hour of the day, day of the week 

and presence of bicycle lane. The Strava Metro data was found to be a significant 

predictor of total cyclist flow with the estimated R-squared value of 0.7. 

 

2.4 Integrating conventional and crowdsourced data sources 

Most of crowdsourced data have inherent bias toward a specific portion of the biking 

population. A convenient way of offsetting such bias will be to fuse the crowdsourced data 

with other data sources. Griffin  et al (2015) used conventional data obtained from bicycle 

count data, GPS survey data and Strava data to understand how effectively bicyclists can 

be monitored in real time using multiple data sources. Griffin’s study quantified how GPS 

survey differs from Strava Metro data by trip purpose. It also identified the proportion of 

bicycle volumes for each land use type that was represented by each data source. 

Another study compared four U.S cities (Austin, Denver, Nashville, and San Francisco) 

at Census block level, on the number of active commuters in Strava Metro data and 
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number of active commuters that were reported in U.S Census Bureau’s American 

Community Survey (Whitfield et al., 2016). Higher correlation between the datasets was 

observed in high population density areas.  

Spatial-temporal distribution of bicyclists’ activity data from GPS can be integrated 

with reported bicycle safety data to provide better and reliable estimates of bicyclist’s risk 

levels. Strauss et al. (2015) mapped cyclists’ activities extracted from GPS data in 

conjunction with cyclists’ injuries in Montreal, Canada. Short-term bicycle counts obtained 

from conventional count data and long-term GPS data were combined to determine the 

bicycle crash risks at signalized intersections, non-signalized intersections and along the 

roadway segments.  

 

2.5 Modeling techniques in fusing conventional and crowdsourced cyclist’s 

activities 

Crowdsourced data only represent a sample of people walking or cycling. Therefore, it 

can be fused with other data sources such as traditional manual bicyclists’ counts or 

retrospective surveys to obtain results which will be generalizable to the total cyclists’ 

population. There are several techniques for fusing multiple sources of spatial data. Lesiv 

et al. (2016) compared several methods for  fusing spatial data namely nearest neighbor, 

naive bayes, logistic regression, geographically-weighted logistic regression (GWR), as 

well as classification and regression trees (CART). Minor difference in performance was 

observed across the methods with GWR showing a slightly better performance than the 

other methods.   

Proulx and Pozdnukhov (2017) used geographically weighted data fusion (GWDF) 

technique whereby four datasets including Strava Metro were combined to provide a 

better estimate of bicycle flow at segment level. The most computationally intensive 

component of this study was homogenization of the datasets to have the same spatial 

and temporal scale since each dataset had its own spatial scale and temporal resolution. 

Each data source was compared with ground-truth bicycle counts. Strava Metro data had 

a better coefficient of determination with ground-truth bicycle counts compared to other 

data sources. As expected, the model with a better prediction performance was obtained 

after combining multiple data sources. The main assumption in the Proulx and 
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Pozdnukhov study was that each data source represented a specific segment of bicyclist 

users. This assumption aligns with the study by Watkins et al (2016) that compared Strava 

data with the agency-monitored smartphone (Cycle) data in Atlanta. It was found that the 

two data sources represented different population segments based on gender, age, 

percent of commute trips, trip lengths, and location of bike paths.  

Different regression models have been used to incorporate Strava data as 

predictor variables in estimating bicycle volume. Hochmair et al. (2016) estimated bicycle 

trips for Miami-Dade county using Strava data as one of the predictor variable in the 

regression equation. The regression equation comprised of eigenvector spatial filter to 

account for spatial autocorrelation and biases in parameter estimation. Other 

sociodemographic and location-specific variables were also included in the model. 

Sanders et al. (2017) used Poisson regression with robust standard errors to estimate the 

average annual daily bicyclist volume (AADB) using annual Strava Metro counts as one 

of the exogenous variables. The mode had a decent performance with the Pseudo R-

squared of 0.568. 

Jestico et al. (2016) used generalized linear equations to establish the relationship 

between crowdsourced data from Strava Metro with the bicyclists’ manual count data. A 

coefficient of determination increased from 0.40 to 0.58 when larger time windows were 

used for aggregating the data. In terms of representativeness, one Strava user was found 

to represent fifty-one riders in the total population. Cyclist volume was also predicted into 

low, medium and high level using Generalized Linear Model (GLM) with a Poisson 

distribution link. Strava data in conjunction with other explanatory variables such as slope, 

traffic speed, on-street parking and time of the year were used to predict the bicycle 

activity level.  

An improved modeling approach is needed to quantify reported risk and perceived 

level of comfort experienced by cyclists when using the road network. Blanc and Figliozzi 

(2016) used ordinal logistic regression to model the cyclist’s level of comfort as a function 

of facility type, trip characteristics and trip stressors. The data were obtained from the 

smartphone application (ORcycle) which was designed to collect statewide information 

about the bicyclists’ safety data, crash data, travel and perceived level of comfort 

(Figliozzi and Blanc, 2015).  
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In another study, Jestico et al (2017) used a negative binomial regression model 

to investigate the relationship between bicyclist incidents reported through web-based 

crowdsourced approach (BikeMaps.org) with roadway infrastructure characteristics. 

Further, Branion-Calles et al. (2016) used logistic regression to compare  the odds of 

crowdsourced near miss data relative to crowdsourced collision data. Furthermore, the 

comparison was made between the odds of crowdsourced collision data relative to 

collision data from the insurance reports. The results indicated higher odds of reporting 

crowdsourced near miss incidents than crowdsourced collision incidents for commute 

trips and at locations without bicycle facility. Also, high odds of crowdsourced collision 

reports, as opposed to collision data from insurance reports, were linked with peak traffic 

hours, midblock locations and routes with bicycle facility.   

Also, different modeling techniques have been used to incorporate crowdsourced 

data to improve bike sharing systems. Piatkowski et al. (2015) used the hierarchical linear 

regression model to investigate the  relationship between the proposed number of  bike 

sharing stations collected via web-based crowdsourcing tool and sociodemographic 

characteristics of the community at census block group. Wu and Frias-Martinez (2015) 

used random forest and support vector machine to predict the crowdsourced biking time 

using Google biking time for the Capital bike share system in Washington D.C. The 

predictions were adjusted for slope and distance to improve the accuracy.  

 

2.6 Challenges associated with the use of crowdsourced data 

A major challenge of crowdsourced data that has been documented in literature is lack of 

sample’s representativeness. It occurs when characteristics of the participants who are 

volunteering information do not represent the population characteristics. Therefore, the 

data obtained from crowdsourced data can be selective, ultimately introducing a bias 

when used by planners who are striving to make an equitable distribution of resources 

and services.  The degree of bias in decision making and resource allocation using 

crowdsourced data will largely depend on the characteristics of the participants 

volunteering the information such as level of internet access and technological literacy, 

public awareness and how the participants were recruited (Blanc et al., 2016; Piatkowski 

et al., 2015). For example, Strava data have been reported to have inherent sample bias 
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towards cyclists who are recreational riders more than commuters or utilitarian riders. 

Also, Strava data has been found to be skewed towards male cyclists  (Lee and Sener, 

2019).  Leao et al (2017) found that demographic information collected using RiderLog 

for crowdsourcing cycling data was biased towards urban populations. This aligns with 

Piatkowski  et al (Piatkowski et al., 2015) study which found that crowdsourced data can 

be highly biased towards communities with certain socio-demographic characteristics. 

For example, in investigating bike sharing program it was found that the proposed bike 

sharing stations via crowdsourcing were biased towards white populations. In addition, 

Blanc et al., (2016) found that bicycle activity data collected from the smartphone 

applications underrepresents females, older adults and low-income population.  

Privacy agreements between the participants and data vendors make it difficult to 

obtain individual information of cyclists such as age and gender from crowdsourced data. 

This limits its utilization and integration with other conventional data sources. Further, it 

limits the evaluation of sample representatives as most of the participants demographic 

characteristics are provided in aggregated format. In addition, most of the crowdsourced 

data may lack quality check before being disseminated to the planners and public at large 

(Ferster et al., 2018; Smith, 2015). This may result into inaccuracies and misinterpretation 

of the results. The GPS-based apps that are used to track cycling activities depend on 

different hardware configurations which can potentially introduce variability in data quality 

(Dhakal et al., 2018). 

All these biases and limitations in crowdsourced data should be properly outlined 

to avoid misinterpretation of results (Boyd and Crawford, 2012). The spatial and temporal 

resolution of crowdsourced data cannot be leveraged effectively in active transportation 

planning without a proper understanding of sample’s representativeness of cyclists’ 

population. Combining crowdsourced data with other data sources will enhance sample 

representativeness and hence improve the data usability. The quality check and privacy 

skeptics of crowdsourced data can be addressed by using advanced analytical 

approaches for analyzing and processing crowdsourced information (Barbier et al., 2012). 

For instance, there has been a huge effort in anonymizing the data for privacy issues 

without distorting the raw information (Leao et al., 2017). The technological advancement 
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in data security will likely improve in the future and in turn boost public engagement in 

decision making through various crowdsourcing platforms. 
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3 Site Selection and Data Collection 

 

This chapter describe the procedures and methods used to acquire both archived and 

new field data. First, the chapter covers the selection process of sites (i.e., roadway 

segments) used for field data collection. The chapter then expands by providing the 

descriptive statistics of all data types that were used in the estimation of bicycle exposure 

to better understand the pattern and distribution of the data. For each data type, 

challenges that were faced while collecting and processing the historical and field data 

are documented.  

 

3.1 Study site selection 

One of the major data collection tasks of this project was to collect the cyclists’ activities 

on the selected roadway midblock segments. Inadequacy of spatial-temporal information 

of cyclist counts is a well-known and documented limitation. To circumvent the situation, 

the research team resorted to collect the field bicycle count data. The two cities in 

Michigan, namely Ann Arbor and Grand Rapids, were selected as the case study areas 

for the study.  For each city, a careful and planned site selection process was conducted 

based on data that were available in all roadway locations. The selection process was 

mainly based on landuse, roadway type and bicycle facility information. The land use 

types were grouped into four major categories, which were commercial, institutional, 

residential and recreational. All the roadway segments were also categorized by a specific 

type of bicycle facility available along each roadway segment. The bicycle facilities were 

divided into four major groups, which were bike lane, shared lane marking, trail and no 

bicycle dedicated facility. In locations where cyclists had no dedicated bicycle facility, 

either sidewalk or roadway shoulder was available. Roadway type information that was 

used followed the national functional classification relevant to our study i.e., arterial, 

collector and local. Each roadway type represented a group of roadways with similar 

geometric and traffic volume characteristics. The available historical cyclists count 

information at some areas of Ann Arbor and Grand Rapids were considered during site 

selection to ensure that the selected sites were a good representation of the overall cyclist 

activities in each city. A total of 19 roadway segments were selected for field data 
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collection in the two cities. Site details for each city are shown in Table 3.1 and Table 3.2 

for Ann Arbor and Grand Rapids, respectively. Figure 3.1 and Figure 3.2 show the spatial 

distribution of the sites in Ann Arbor and Grand Rapids, respectively.   

 

Table 3.1: Selected sites in the city of Ann Arbor 

No 
Segment 

Name 
Land use Bike facility Latitude Longitude 

1 5th Street Commercial Bike Lane 42.278684 -83.746129 

2 Murfin Road Institutional Shared Lane 42.296415 -83.719707 

3 Huron Pkwy Residential None 42.281959 -83.765323 

4 Division Ave Institutional Bike Lane 42.275278 -83.744247 

5 Platt Rd Residential Bike Lane 42.243612 -83.700060 

6 Nixon Rd Residential Bike Lane 42.317163 -83.707602 

7 Plymouth Rd Institutional Bike Lane 42.302561 -83.705764 

8 Miller Rd Residential Shared Lane 42.283312 -83.750237 

9 State@Liberty Commercial Shared Lane 42.279812 -83.740804 

10 State@Packard Commercial None 42.270327 -83.740595 

 

Table 3.2: Selected sites in city of Grand Rapids 

No. Road Name Land use Facility Latitude Longitude 

1 Cherry St SE Commercial Bike lane 42.9594 -85.6586 

2 Grandville Ave SW Commercial Shared lane 42.9603 -85.6735 

3 Lake Dr SE Residential None 42.9544 -85.6299 

4 Monroe Ave NE Residential Bike lane 43.0103 -85.6665 

5 N Park St NE Institutional Bike lane 43.0224 -85.6602 

6 Walker Ave NW Institutional Bike lane 42.9832 -85.7021 

7 White Pine Trail Recreational Trail 43.0026 -85.6708 

8 Oxford Street Trail Recreational Trail 42.9559 -85.6861 

9 Kent Trail Recreational Trail 42.9506 -85.7095 
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Figure 3.1: Spatial distribution of selected sites in Ann Arbor 
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Figure 3.2: Spatial distribution of selected sites in Grand Rapids 
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3.2 Data Collection 

Different types of data were collected to assist in the estimation of bicycle exposure. The 

main data types that were collected in this project were;  

 Total cyclists count for the selected roadway segment, 

 Cyclists’ activities from Strava Metro data for each roadway segment, 

 Weather data at hourly level, 

 Bicycle facility data, 

 Census data at block level, 

 Landuse data, and 

 Survey data. 

 

3.3 Total cyclists count 

The total cyclists count data were collected using video recordings at 16 sites and 

pneumatic tube counters at three sites. The video data were collected for one week 

continuously at each site. About 1,520 hours of video data were recorded at the 16 sites. 

The video camera had a feature which provided date and time stamp for each recording. 

This information was essential for data preprocessing as it enabled temporal match with 

other data types such as Strava data.  A good location was selected for mounting the 

camera to facilitate the recording of cyclists in both directions of the road. The camera 

mounting height had to be greater than 6 feet for compliance with city regulations. In most 

cases the research team utilized the utility poles with the permission from the respective 

owner (i.e., city or utility company).  The camera was firmly secured to the pole using 

fasteners and lockers to prevent it from vibration caused by wind and potential vandalism. 

The demonstration of how the camera were installed at the sites is shown in the Figure 

3.3 below. Figure 3.4 and Figure 3.5 provide examples of video recordings at the site 

located along Monroe Avenue in Grand Rapids and along Nixon Road in Ann Arbor, 

respectively. Details about data collection are available in Appendix 8.1 – 8.4. 
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Figure 3.3: Installation of cameras on sites with bike lanes or shared lane markings 

 

 

Figure 3.4: Position of the camera relative to the flow of cyclists in Monroe Ave, Grand 
Rapids 
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Figure 3.5: Position of the camera relative to the flow of cyclist in Nixon Road, Ann 
Arbor 

 

The bicycle tube counters were installed across the White Pine trails, Oxford Trails 

and Kent trails in Grand Rapids. The bicycle tube counters are suitable for such locations 

as there were no vehicles in pedestrians and cyclists mix. The majority of people who 

were using the trails were walkers, runners and cyclists. The tube counters were installed 

for a week on each site to capture hourly variation within a day and daily variation within 

a week. Figure 3.6 and Figure 3.7 illustrate the position of bicycle tube counters relative 

to the movement of cyclists on trails.  
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Figure 3.6: Bicycle tube counters on White Pine Trails, Grand Rapids 

 

 

Figure 3.7: Bicycle tube counters on Oxford Trails, Grand Rapids 

 

3.4 Video data processing  

The COUNTPro Software was used to semi-automate the counting process. The software 

has an interface (see Figure 3.8) that allows a person who is counting to adjust the 

playback speed as desired, depending on the level of cyclists’ activities. The data are 

automatically recorded by pressing the count pad once a cyclist is spotted in the video 
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recording. The use of CountPro software reduced the preprocessing time by almost 80 

percent.  

 

 

 

Figure 3.8: An interface of COUNTPro software and the COUNTpad used for counting 
cyclists  

 

3.5 Strava Data 

The Strava data was purchased covering a period of one year (February 2018 to January 

2019). Strava offers a data package called Strava Metro which comprises of hourly or 

rollup cyclists’ activities for each node (intersection) and edges (segment) of the roadway 

network. It further subdivides the cyclists’ trips into commute and non-commute trips. The 
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time for each activity for a given hour or rollup (aggregated by time of the day, a week, a 

month, or a season) is also available. Other information in the Strava Metro package 

includes aggregated demographic information of Strava users by age and gender and 

origin-destination table aggregated within 350m hexagonal polygonal geometry. A 

comma delimited file of hourly Strava activities at all segments in the city of Ann Arbor 

and Grand Rapids was joined with the road edge shapefile using ArcGIS software. This 

enabled spatial merging with other data such as roadway bicycle facilities information, 

total cyclists count from video recordings, landuse data, weather data and census data.  

Figure 3.9 and Figure 3.10 provide the distribution of Strava activities (monthly 

average) by different land use types for the city of Ann Arbor and Grand Rapids 

respectively. In Ann Arbor city, significant portion of Strava activities were found in the 

northern part. Strava users mostly used scenic routes such as West Huron River Drive 

going along the Huron River and trails passing through residential, forest, and rangeland 

areas such as the Pontiac trails. Roadway that were relatively close to the scenic routes 

and trails also had high number of Strava users. These nearby roadways acted as entry 

or exist to those areas or routes that attracted most of the Strava users.  The Gallup Park 

Pathway border to border trail that starts from northwestern part to eastern part of Ann 

Arbor also attracted a significant number of cyclists who were using Strava app.  

Similar pattern was observed in the city of Grand Rapids. Strava users were mostly 

attracted to trails that were passing through forest/wetland/rangeland areas or surrounded 

by water bodies such as Kent Trail and Oxford Trails in the western part area and White 

Pine Trail in Riverside Park in the Northern part area. Also, a relatively high number of 

Strava activities was observed in the central part of Grand Rapids which is characterized 

by commercial activities.  The Monroe Avenue site which has a separate two-way bike 

lane (side path) also attracted significant number of cyclists who were using Strava app.  

The southern area of Grand Rapid had relatively low number of cyclists using Strava app 

with exception of Plaster Creek Trail which pass through Ken-O-Sha Park. 

Overall, we can discern that majority of Strava users were found to ride in 

recreational and residential areas having trails or scenic routes close to water bodies.  

Roadway that were proximal to these locations also experienced a high number of cyclists 

using Strava app. These roadways mostly provided access to cyclists who were entering 
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or exiting from these trails and scenic routes. Furthermore, the data showed that 

roadways with dedicated bicycle facility for example, Monroe Avenue and Walker Avenue 

in city of Grand Rapids, attracted a significant number of Strava cyclists.  

 

Figure 3.9: Distribution of Strava activities relative roadway and land use type in Ann 
Arbor 
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Figure 3.10: Distribution of Strava activities relative roadway and land use type in Grand 
Rapids 

 

3.6 Weather Data 

The historical hourly weather data for the city of Ann Arbor and Grand Rapids were 

obtained from an online weather repository, www.wunderground.com. The snapshot of 

the online weather information is shown in Figure 3.11. Each weather station provides an 

hourly weather information such as precipitation, temperature, relative humidity, and wind 

speed. For each site, the research team selected weather stations that was closest to the 

http://www.wunderground.com/
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video data collection site and the time were matched to ensure an exact match is obtained 

between the cyclists’ activities and the weather data.  

 

 

Figure 3.11: Weather Stations in Ann Arbor and Grand Rapids at hourly Level 

 

3.7 Survey data 

The survey of cyclists was conducted concurrently with video data collection of cyclist 

activities. It was designed to acquire the information which were difficult to discern using 

the video data. Such information includes (1) demographics and cycling behavior of the 

cyclists (2) characteristics of the trip(s) made by the cyclists, and (3) the proportion of 

cyclists using fitness and health apps to track their cycling activities. The survey had a 

total number of 10 questions which took a maximum of 2 minutes to complete. The survey 

was conducted at nearby bicycle racks and trail rest areas. Figure 3.12 shows some of 

the locations were the survey was administered including Kent Trail and Riverside trails 

in Grand Rapids. Figure 3.13 shows the number of cyclists that were surveyed for each 

location in Ann Arbor and Grand Rapids. The survey was conducted in the period between 

May to August 2018 – the same time when video data were also collected in the field. 

The survey questionnaire is available in Appendix 8.5. 
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                     Figure 3.12: Survey of cyclists on the bicycle racks or trail rest areas 

  

Figure 3.13: Survey locations with respect to video data collection of cyclists’ activities 
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3.8 Descriptive statistics of the data 

The analysis of descriptive statistics was carried out to understand basic relationships 

between different data types. Correlation plots and coefficient of determination were used 

to assess the association between total cyclists counts and Strava cyclists counts based 

on landuse, time of the day, roadway facility and weather. Also, Strava penetration rates 

which is the ratio of Strava count to total cyclists count were calculated based on landuse, 

bicycle facility and time of the day. 

3.8.1 Comparison of Strava counts and total counts 

Figure 3.14 shows the hourly distribution of total cyclist counts and Strava cyclist counts 

aggregated for all sites. The trend of total cyclist counts had a sharp increase starting 

from 6:00 am up to noon with no significant change afterwards until around 7:00 pm. The 

peak flow of total number of cyclists was observed between 6-7 pm. Thereafter, there 

was a continuous decrease in the number of cyclists with almost no cyclist recorded after 

midnight. Same pattern was observed for the segment of cyclists that were using Strava 

app with a significant positive correlation coefficient (R= 0.7244, p=0.0007) between 5:00 

am to 11:00 pm. In particular, the correlation was observed to be stronger between 5:00 

am to noon time (R= 0.9485, p=0.0003) and from 6:00 pm to 11:00pm (R= 0.9148, p= 

0.0295).   

 

Figure 3.14: Hourly trend of Cyclist Activity: Total versus Strava Counts 
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3.8.2 Correlation of cyclist counts with weather data. 

The hourly distributions of cyclists’ counts were compared with hourly distribution of 

weather information particularly relative humidity expressed in percentage. The counts 

were aggregated in the relative humidity bins having a class interval of 5%. The trend of 

total cyclist counts and Strava counts were compared for each relative humidity bin. 

Figure 3.15 shows the frequency of hourly counts for each relative humidity bin 

represented by a class mark on an x-axis. The total number of cyclists aggregated over 

each bin is also plotted together with the frequency which is the number of hours spent in 

collecting cyclist counts for each bin of relative humidity. It can be observed that the 

number of hours per each bin didn’t have a considerable variation at relative humidity 

between 50-100%. However, the total cyclists per each bin kept on decreasing, with 

maximum number of total cyclists observed at a relative humidity of 50%. The same trend 

was observed for cyclists who were using Strava app. The cyclist counts were normalized 

by frequency (number of hours) at each bin as shown in Figure 3.16. The spikes above 

average were observed for both total number of cyclists and Strava userss on a relative 

humidity range of 10-25% and 45-65%. Figure 3.17 shows the distribution of counts for 

each relative humidity bin separated by bicycle facility type. The high counts spikes at 

lower relative humidity (10-25%) were mostly on trails while the remaining observed 

spikes on moderate relative humidity (45-65%) were on bike lane and shared lane 

facilities. In summary, the results show that cyclists tend to avoid riding when the relative 

humidity is too high. 
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Figure 3.15: Distribution of counts with respect to relative humidity variations across 
sites 

 

Figure 3.16: Normalized distribution of counts with respect to relative humidity variations 
across sites 
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Figure 3.17: Distribution of cyclists counts with relative humidity by bicycle facility 

 

3.8.3 Strava penetration rates 

Strava penetration rates were computed as the percent of cyclists who were using Strava 

app in the total cycling population. The penetration rates were calculated for different 

categories as shown in Table 3.3.  The Pearson correlation of coefficient (R) was 

computed for each attribute of a given category using hourly total cyclists’ counts and 

hourly Strava counts.  

The distribution of Strava penetration rates by hour of the day had a range of 0 to 

10 percent. The minimum penetration rate was observed in Early AM hrs: 12am-5:59am 

while the maximum penetration rate was observed at PM hrs: 3pm-7:59pm. The 

coefficient of correlation by hour of the day ranged from 0.419-0.621. The Pearson 

correlation coefficient indicated a significant correlation between hourly total cyclist counts 

and Strava cyclist counts for each hour of the day. 

Site location where there was no dedicated bicycle facility and cyclists had to use 

either sidewalk or shoulder didn’t have any cyclists that were using the Strava app. The 

Strava penetration rates for shared lane was 4 percent followed by bike lane (6 percent) 
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and trails which had a maximum penetration rate of 9 percent. The correlation coefficient 

ranged from 0.209 (p=0.001) on shared lanes bicycle facility to 0.646 (p=0.000) on trails.  

With respect to landuse, roadway segment passing through the commercial area 

had the lowest Strava penetration rate (3 percent) followed by residential areas (5 

percent), institutional areas (6 percent) and recreational areas (9 percent). The Pearson 

correlation coefficient range was 0.114 to 0.646.  

The distributions of Strava penetration rates by bicycle facility and land use type 

concurs with the spatial analysis which was conducted in the previous section. Significant 

number of Strava users were observed to use trails and scenic routes which had 

dedicated bicycle facilities that passed through residential and institutional areas.  

 

Table 3.3: Strava Penetration Rates 

Category Attributes 
Total  

count 

Strava  

Count 
Pen (%) 

Pearson’s 

correlation 

p-

value 

Hourly 

adjustment 

Early AM hrs: 12am-5:59am 34 0 0% - - 

AM hrs: 6am-9:59am 1756 55 3% 0.419 0.000 

Mid-Day hrs: 10am-2:59pm 4932 200 4% 0.643 0.000 

PM hrs: 3pm-7:59pm 5584 535 10% 0.621 0.000 

Evening hrs: 8pm-11:59pm 1028 95 9% 0.463 0.000 

Bike 

Facility 

Sidewalk|Shoulder 551 0 0% - - 

Shared Lane 1835 65 4% 0.209 0.001 

Bike Lane 6415 390 6% 0.600 0.000 

Trail 4533 430 9% 0.646 0.000 

Land use 

Type 

Commercial 1557 45 3% 0.114 0.053 

Residential 3027 165 5% 0.435 0.000 

Institutional 4217 245 6% 0.653 0.000 

Recreational 4533 430 9% 0.646 0.000 

Grand Total 13334 885 7% 0.596 0.000 
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4 Survey of Cyclists in Ann Arbor and Grand Rapids 

The survey was conducted to understand the similarities and differences between cyclists 

who were using fitness apps to monitor their cycling activities and cyclists who were not 

using any fitness tracking apps. The similarities and differences between these two 

cohorts of cyclists were analyzed based on cyclists’ demographic characteristics, cycling 

experiences, cyclists’ trip characteristics and cycling behavior. The statistical test of 

homogeneity was used to discern if the observed differences or similarities were 

significant. Furthermore, the logistic regression was used to understand how cyclists’ 

demographic characteristics, trip characteristic, and cycling behaviors impact the 

likelihood of using a fitness tracking app(s).  

 

4.1 The use of fitness trackers among cyclists 

Cyclists were asked to report if they use Strava app or any other fitness app to track their 

cycling activities. Figure 4.1 displays the distribution of cyclists by fitness tracking app 

usage. A total of 321 cyclists were surveyed in the city of Ann Arbor and the city of Grand 

Rapids. The majority of cyclists who participated in the survey reported that they do not 

use any fitness tracking apps (66 percent). About 16 percent of cyclists reported to use 

Strava app to monitor their cycling activities and 18 percent reported to use other fitness 

tracker app(s) that are currently on the market.   
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Figure 4.1: Reported tracking app(s) usage by cyclists 

 

4.2 Demographics and cycling experience of cyclists 

Figure 4.2 shows the distribution of cyclists by fitness tracker app usage for each cyclists’ 

age group. The fitness tracker app usage was more among cyclists aged 35 years to 44 

years and older cyclists aged 65 years and above. The high proportion that was observed 

among older cyclists using fitness tracker apps may suggest that older cyclists are keen 

on assessing potential benefits of cycling and not just riding for pleasure. 

Age of a cyclist can be a factor in usage of fitness tracking apps. In this survey, 

cyclists who reported to use Strava app had higher percentage compared to those who 

are using other fitness app among the age groups of 25-34 years and 35-44 years. Other 

fitness apps were likely to be used more by older cyclists i.e., age greater than 55. Overall, 

the observed difference in fitness tracker app usage across age groups was significant at 

95 percent confidence level (ӽ2=34.22, p=0.00).  
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Figure 4.2: Cyclists’ app usage across age groups 

 

The distribution of fitness tracker app usage was slightly higher among female 

cyclists (37%) compared to male cyclists (24%) as shown in Figure 4.3. The observed 

differences in app usage between male and female was significant at 90% confidence 

level (ӽ2=34.22, p=0.06). The proportion of Strava users was slightly higher than other 

tracking app(s) users among male cyclists while female cyclists reported to use other 

fitness tracker app(s) more than Strava App. This suggests that Strava can capture male 

cycling population, data from other fitness tracker app(s) can be used along with the 

Strava data to capture the female cycling population. 

 
Figure 4.3: Tracking app utilization among males and females 
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Figure 4.4 indicates the increase in proportion of cyclists using tracking and fitness 

apps for experienced cyclists (intermediate skills and expert). Fitness tracking apps were 

more likely to be used by intermediate and expert cyclists compared to beginners. The 

percentage of other tracking apps utilization among beginners was slightly higher (17%) 

compared to Strava utilization (11 percent), but no difference in Strava app and other 

tracking apps utilization was observed for intermediate and expert cyclists. The observed 

difference in distribution between cyclists who were using fitness tracker apps and cyclists 

who were not using any fitness tracker app was significant at 95 percent confidence level 

(ӽ2=11.15, p=0.03). 

 
Figure 4.4: Tracking app utilization by cycling experience 

 

4.3 Cycling characteristics by trip purpose 

The trip purpose is one of the essential elements that is used in planning and designing 

of bicycle facilities. In most cases, it signifies the pattern and distribution of cycling 

activities on a given roadway network. The trip purpose was explored based on fitness 

track app utilization (Figure 4.5), cycling frequency (Figure 4.6) and bicycle facility usage 

(Figure 4.7). 

Cyclists were more likely to use fitness tracker apps when making recreational trips 

(45%) compared to when they were making commute trips (22%). Strava app was likely 

to be utilized more among commuters (13%) compared to other tracking apps (9%). For 
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recreational trips, 25% of cyclists reported to use other fitness tracker apps compared to 

20% of cyclists who were using Strava app. The observed difference of app utilization by 

trip type was significant at 95 percent confidence level (ӽ2=20.05, p=0.00).  

Moreover, cyclists who reported to be on recreational trips were more likely to use 

off-road facilities such as trails (89%) while commuters were more likely to use other 

bicycle facilities such as dedicated bike lanes and shared lanes (87%). For planning 

purposes, the results suggest that, in the absence of trip purpose information, the bicycle 

facility type information can be a potential surrogate for trip purpose.  

The frequency of biking was strongly associated with the trip purpose (ӽ2=20.05, 

p=0.00). Cyclists who were commuting were likely ride always (87 percent).  Cyclists who 

ride for recreation were likely ride several times in a month (86 percent) to few times a 

week (67 percent). The results offer practical significance in planning of bicycle facilities. 

For planners who resort to using crowdsourced data from fitness tracking app, necessary 

adjustment factors are needed in case the data from fitness tracking app is determined 

to be biased toward recreational trips. The adjustment factor can be found using a survey 

to get the ratios of frequency of use of a given bicycle facility by trip purpose. Alternatively, 

other modeling procedures, such as one proposed in this study (Chapter 5) can be used 

to offset the bias by incorporating other confounding factors. 

 
Figure 4.5: Distribution of tracking fitness app usage by trip purpose 
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Figure 4.6: Bicycle facility usage by trip purpose 

 
Figure 4.7: Frequency of biking by trip purpose 

 

4.4 Factors influencing the choice of fitness tracking app utilization among 

cyclists 

The logistic regression model was estimated to understand how each of the demographic 

characteristics, trip characteristics and cycling behavior affect the choice of using a fitness 

tracker app(s).  Table 4.1 displays the summary of the dependent variables and the 

covariates that were used in the model. Age and gender represented the demographic 

characteristics of the cyclists of the participants while biking frequency, trip purpose and 

sidewalk use represent the riding behavior of cyclists.  
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Table 4.1: Variable descriptions 

Variable Category Observation Percent Freq. 

Fitness 
Tracking app(s) 

Usability 

Yes 56 34% 

No 212 66% 

Strava 
Usability 

Yes 52 16% 

No 268 84% 

Age <16 3 1% 

16-24 years 61 19% 

25-34 years 83 26% 

35-44 years 38 12% 

45-54 years 47 15% 

55-64 years 50 16% 

>65 years 38 12% 

Gender Female 112 35% 

Male 208 65% 

Biking 
Frequency 

Always 117 37% 

Often 144 45% 

Sometimes 59 18% 

Biking 
Experience 

Beginner 27 8% 

Intermediate 219 68% 

Expert 74 23% 

Trip Purpose Commute 154 48% 

Recreational 166 52% 

Riding 
Behavior 

(Sidewalk Use) 

Always 65 20% 

Only on Busy 
Roads 

186 58% 

Never 54 17% 

No Preference 15 5% 

 

A logistic regression was estimated for two scenarios. The first scenario dealt with 

cyclists who reported to use Strava app for tracking their fitness while the second scenario 

dealt with cyclists who reported to use other fitness tracking app(s) that available in the 

market. The analysis aimed at understanding the influence of each covariate for each of 

the scenario. The logistic regression allows us to measure the influence that a certain 

covariate on cyclists’ choice of either to use or not using fitness tracking app while 

controlling for other confounding covariates. The odds ratios (OD) which is the 

exponentiated coefficients of the covariates has been used widely in the literature for 

assessing the impacts of covariates on a binary outcome. Table 4.2 displays the logistic 
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model results for the two scenarios. The covariates that were retained in the model were 

significant at least at 90% confidence level in either of the scenario.  

Cyclist age information was obtained from the survey in a form of age group. The 

age cohorts that were significant in the model for the case of Strava app utilization were 

age groups 25-34 years, 35- 44 years and greater than 65 years. The reference group for 

age variable was cyclists whose age were below 25 years. The odds of using a Strava 

app were likely to increase by 6.7% for cyclists’ age 25-34 years and 52% for cyclists age 

35-44 years. The cyclist age group 35-44 years may likely represent a cyclist segment 

that is mostly captured in Strava cycling data. The older cyclists age 65 years had lower 

odds of using Strava app compared to the reference group of cyclists (age less than 25 

years). Conversely, older cyclists had higher odds of utilizing other fitness app(s) for 

monitoring their fitness (OR=1.94). Further, cyclists whose ages were between 25 to 34 

years had significant lower odds of using other fitness tracker apps compared to young 

cyclists (age less than 25). Conclusively, Strava app was found  to significantly capture 

middle age group (25-44yrs) while other fitness apps were likely to be utilized by young 

cyclists age less than 25 and older cyclist age 65 years and above.  

The odds of using Strava app for male cyclists increased by a factor of 2.204 

compared to females. Conversely, the female cyclists had higher odds (OR=1.813) 

compared to males for cyclists who reported to use other fitness app(s). The results 

suggest that Strava app is likely to be utilized more by male cyclists while other tracking 

fitness apps are likely to be utilized more by female cyclists after controlling for other 

confounding factors.   

Trip purpose was found to significantly affect the use of fitness tracking apps 

among cyclists. This covariate was significant among Strava users and other fitness 

tacker apps users.  In both cases, cyclists who were making recreational trips had higher 

odds of using fitness tracking apps compared to cyclists who were making commute trips. 

This emphasizes the need to incorporate other data sources to account for 

underrepresentation of commute trips when estimating the total number of cyclists’ trips 

as data from fitness tracking apps are likely to be biased towards recreational trips.  

Cycling behavior in the context of sidewalk usage was a significant factor in 

determining whether a cyclist will use a Strava app. The cyclists were asked whether they 
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will use a sidewalk given the bicycle facilities such as bike lane or shared lane were 

available.  The riding behavior of cyclists was a significant determinant of Strava app 

usability but not for other fitness tracking app usability. Cyclists who reported to always 

use the sidewalk regardless of presence of bicycle facilities were treated as a reference 

group when calibrating the logistic regression model. The odds of cyclists using a Strava 

app increased by 3.5% for cyclists who reported to use sidewalk only when riding on a 

high-speed or busy road. Cyclists who were keen in utilizing the dedicated bicycle facility 

if available regardless of any road condition were the most likely group of cyclists to utilize 

Strava app (IR=1.854).  

Other significant factors were cycling frequency and cycling experience which were 

significant determinants only for Strava app utilization. Cyclists who were riding always, 

possibly commuters, had lower odds of using Strava app compared to occasional riders. 

Based on cycling experience, the odds of using Strava apps were higher for cyclists who 

had intermediate to advanced cycling skills.  

The survey results suggest that cycling activities data from Strava app and other 

fitness apps can be used jointly in estimation of bicycle exposure since they represent 

different cycling population by age and gender. Male cyclists are likely to have high odds 

of using Strava app while female cyclists have higher odds of using other fitness apps. 

Further, Strava is more likely to be used by middle-age group of cyclists while other fitness 

apps are likely to be utilized by young and older cyclists. Therefore, combining different 

crowdsourced data may enable a more accurate estimation of total cycling activities 

covering a greater demographic diversity of cyclists.  
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Table 4.2: Results of Logistic Regression 

Covariates 
Strava App  Other fitness tracking app(s) 

Coef. OR z P>z  Coef. OR z P>z 

Cyclist's age (ref: <25 years)          

25-34 years 1.067 2.907 2.670 0.008*  -0.820 0.440 -1.750 0.080+ 

35-44 years 1.520 4.570 3.270 0.001*  -0.211 0.810 -0.410 0.683 

>65 years -1.569 0.208 -1.950 0.051+  0.662 1.940 1.530 0.126 

Gender          

Male (ref: female) 0.790 2.204 2.070 0.038*      

Female (ref: Male)      0.595 1.813 1.820 0.069+ 

Trip purpose (ref: Commute)          

Recreational 0.873 2.395 2.390 0.017*  0.691 1.996 1.840 0.066+ 

Sidewalk use behavior 
(ref: Always) 

         

Never using a side walk 1.854 6.385 3.140 0.002*  -0.116 0.890 -0.240 0.813 

Only on high-speed road 1.035 2.815 1.940 0.053+  -0.539 0.583 -1.490 0.137 

Cycling frequency          

Often 0.591 1.805 1.690 0.092+  0.309 1.362 0.930 0.352 

Cycling experience          

Intermediate 0.984 2.675 1.230 0.220  0.673 1.960 1.020 0.308 

Expert 1.407 4.085 1.660 0.097+  -0.389 0.678 -0.500 0.620 

Constant -5.472 0.004 -5.210 0.000*  -2.421 0.089 -3.350 0.001* 

 

Note *significant at 95% CL, +significant at 90% CL 
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5 Integrating Crowdsourced Data in Estimation of Bicycle 

Exposure 

Crowdsourced data from fitness tracker apps have been increasingly used in urban 

planning of non-motorized facilities as it has shown to be relatively fast, convenient and 

inexpensive means of acquiring public inputs. The market for fitness tracking apps is 

expected to continue growing in the coming years as more people are increasingly 

becoming interested in monitoring their health when engaged in physical activities such 

as walking and bicycling. This provides opportunities for leveraging such data to 

understand the travel patterns of non-motorized traffic at various levels of spatial 

granularity. This chapter address ways in which crowdsourced data can be integrated 

with other available data sources to improve the estimation of bicycle exposure. The 

chapter expounds on the specific modeling approaches that were used to estimate bicycle 

exposure at hourly level using crowdsourced cyclists’ activities from Strava Metro as one 

of the exogenous variables. The inherent setback of Strava data being biased toward a 

specific segment of cyclists is circumvented by incorporating other covariates in the model 

such as census data, bicycle facility, hourly adjustment and land use data. Specific 

analyses covered in this section include using probabilistic and machine learning-based 

approaches to estimate hourly bicycle volume and a simulation study of Strava 

penetration rates. Model performance based on base and simulated Strava penetration 

rates and the practical implications of the results are discussed. 

 

5.1 Distribution of total bicycle counts 

Figure 5.1 displays the hourly distribution of total cyclist counts for all the sites that were 

used in the analysis. A total of 1,520 hours of cyclist counts were collected from all the 19 

sites. About 13 percent of the total hours had zero counts. The percentage of zero cyclists 

count was not overrepresented in our sample to warrant the use of zero-inflated count 

models. Majority of hourly cyclists count were between 0 to 10 cyclists as shown in the 

cumulative frequency graph (Figure 5.2).   
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Figure 5.1: Histogram of hourly distribution of cyclist counts 

 

Figure 5.2: Cumulative hourly distribution of cyclist count 
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5.2 Correlation of covariates 

Before going into the model calibration, it was important to understand how the variables 

correlate to one another. Variables that have a good correlation with the dependent 

variable tend to fit the model well during calibration. Figure 5.3 shows the correlation plots 

for all possible pairs of variables that were used in model calibration.  The value in each 

box is the Pearson correlation coefficient for a given pair of variables. A column of interest 

is the one that compares the total cyclists count (dependent variable) with the covariates. 

Strava counts had the highest correlation coefficient of 0.6 followed by humidity and 

proportion of males in a given census block where the roadway segment is located.   

 

Figure 5.3: Correlation plots of variables used in the model 
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5.3 Modeling approaches 

In calibrating the model, different modeling approaches were used in order to determine 

the model with the best fit. The use of different model approaches allowed us to 

investigate the consistency of independent variables, particularly Strava counts, in 

predicting total cyclist counts after controlling for other confounding factors. In this study 

we deployed a probabilistic model namely Negative Binomial regression. Furthermore, 

five machine-based learning models were used namely;  Random Forest, Bagged 

regression tree, K-Nearest Neighbor, Support Vector Machines and Neural Network. A 

brief description of each machine learning technique is provided hereafter. 

 

5.3.1 Negative Binomial 

Negative binomial regression which handle cases where mean and variance of the count 

data are not equal can be derived from the Poisson model. The probability of segment 𝑖 

having n number of cyclists a given time period can be written as (Hilbe, 2011):  
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                                                                                                   (5.1) 

i  is the Poisson parameter for segment i. In this study it can be defined as number of 

cyclists in a given hour.  Generalizing Poisson model by introducing unobserved effect 𝜀𝑖 

such that the expected Poisson parameter becomes  

 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖 + 𝜀𝑖)                                                                                                     (5.2) 

 

With 𝜆𝑖 = 𝐸𝑋𝑃(𝜀𝑖) is known as gamma distributed error term with mean of one and 

variance of
2 , 𝛽 = the vector of coefficient of predictor variables and 𝑋𝑖 = the predictor 

variable i. Upon modifying mean-variance relationship for expected variance-mean 

relationship of hourly cyclist 𝑦𝑖 becomes: 

 

          21 iiiii yEyEyEyEyVar  
                                                               (5.3) 
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If α is significantly different from zero then the cyclists counts in a given hour are said to 

be overdispersed for positive α values and underdispersed for negative α values. For 

overdispersion case, the resulting Negative binomial probability distribution can be written 

as: 

                                                               (5.4) 

 

Whereby, )(x  = A value of the gamma function,   = Overdispersion parameter and iy  

= Number of hourly cyclist counts in a given road segment i 
 

5.3.2 Random Forest 

The RF-model is one of the most popular and accurate predictive machine learning 

techniques that have been used across various disciplines for classification and 

regression purposes (Hastie et al., 2009). The RF is an ensemble classifier that builds 

the decision tree from the bootstrapped training sample using a subset of predictors 

selected from the total predictors (Pal, 2017). Unlike other decision tree methods, a 

random sampling of predictor variables de-correlate the bootstrapped tree, thus 

increasing the overall performance of the RF model upon aggregation of all the trees. The 

ability of RF model to simultaneously de-correlate the trees and apply variable selection 

during the calibration process reduces the chances of model overfitting, and less 

variances when used in a different dataset (Gareth et al., 2013). The optimization problem 

of random forest involved finding the optimal selection tuple at each node by applying the 

impurity measure that is proportional to the heterogeneity of the node. A common node 

impurity measure is Gini impurity Index. If there are p classes the category set can be 

defined as (Bonaccorso, 2018):  

 

𝑌 = {𝑦1, 𝑦2, … … … . 𝑦𝑀} 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖 ∈ [1, 𝑝]                                                                       (5.5) 

 

The Gini Impurity Index which has to be minimized is given as 
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𝐼𝐺𝑖𝑛𝑖  (𝑋𝑘) = ∑ 𝑝(𝑗|𝑘)(1 − 𝑝(𝑗|𝑘))𝑝
𝑗=1                                                                              (5.6) 

 

Whereby, p(j|k) represents the proportion of training observations in the jth region that 

are from the kth class. Gini index takes on a small value if all of the p(j|k) are close to zero 

or one 

 

5.3.3 Artificial Neural Network 

Artificial Neural Network (ANN) or sometimes referred as the connectionist systems is the 

framework that allows different machine learning algorithm to work together in solving 

complex tasks. It has recently become one of the most powerful computing algorithms for 

solving complex tasks in various disciplines such as object recognition and speed 

processing due to its ability of producing accurate results (Chien, 2019). The ANN is the 

collection of nodes commonly referred to as artificial neutrons. The input structure has 

the number of nodes equals to the dimensions of the input while the output has two nodes 

if it is a classification problem or one node if it is a regression problem. The ANN can have 

a layer of nodes that are neither input nor output that are commonly known as hidden 

layers. The complexity of the network increases with the increase in number of hidden 

layers. Figure 5.4 shows an example of ANN structure that was tested using our dataset. 

Each link that connects node i and node j is assigned the weights Wij based on the chosen 

learning rule A neuron with label j will receive an input from a predecessor neutron i 

consisting of the threshold/bias (b), and activation energy, 𝑁𝑒𝑡𝑗 and activation 

functions, 𝑓𝑎. The cost function is used to iteratively change the initial tuning values of 

weight, bias and activation energy while minimizing the mismatch between the target 

output and the ANN output. The net activation energy can be computed as(Duda et al., 

2001) 

 

𝑁𝑒𝑡𝑗 = ∑ 𝑥𝑖𝑤𝑗𝑖 + 𝑤𝑗𝑜
𝑑
𝑖=1                                                                                                 (5.7) 

 

Whereby, 𝑤𝑗𝑖 is the vector weight and 𝑤𝑗𝑜 is the bias. 
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Figure 5.4: Example of Artificial Neural Network used in this research 

 

5.3.4 Classification tree 

The decision tree algorithm recursively assigns the observations into the most common 

occurring class using orthogonal splits.  The splitting is performed using various unbiased 

splitting criteria such as Gini Index and Entropy measure of homogeneity (Strobl et al., 

2007). Classification trees have a greater advantage over other machine training tools as 

they can be visualized graphically for high dimensional cases. They are very easy to 

explain interpret by non-experts. However, simple classification trees are non-robust and 

may likely to suffer from high variance when tested in a different dataset (Gareth et al., 

2013). Bagging is one of the ensemble methods that was used in our analysis to improve 

decision tree predictive ability by lowering the variance of the estimates.  For bagged 

classification tree, multiple training datasets are created using bootstrap method. The 

trees are sequentially built on the training data by learning from the previous trees. The 

first tree is built by using the response variable, y while subsequent trees are built based 

on the residuals, r, of their previous trees. This way, boosting creates a splitting classifier 
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that put an emphasis on the misclassified samples, thus minimizing overall error upon 

aggregation of all trees (Sutton, 2005).  

The tuning parameters for boosting include number of trees, B, shrinkage parameter, 

λ, which controls the boosting learning rate and the number of trees or interaction depth, 

d, which controls the complexity of boosting assemble. Usually, cross-validation approach 

is used to find the optimal tuning parameters that provide a balance of predictive power, 

efficiency, and flexibility of the model. A general simplified routine for boosting is as 

follows (Gareth et al., 2013); 

 Set f(x)=0, and 𝑟𝑖 = 𝑦𝑖 for all i in the training set 

 For b=1,2,3……B, repeat 

 Fit a tree 𝑓𝑏 with d splits to the training data (X, r). 

 Update 𝑓 by adding a shrunken new tree: 𝑓(𝑥) ← 𝑓(𝑥) + 𝜆𝑓  𝑏(𝑥) 

 Update the residuals; 𝑟𝑖 ← 𝑟𝑖 + 𝜆𝑓  𝑏(𝑥) 

 Output the boosted model; 𝑓(𝑥) = ∑ 𝜆𝑓  𝑏(𝑥)𝐵
𝑏=1 . 

  

5.3.5 Support vector machines 

Support vector machines is another popular machine learning technique used in 

classification problems. It evolves from the idea of the maximum marginal classifier. The 

maximum marginal classifier works well for separable cases where it is optimized to 

separate class labels by maximizing the minimal distance from the training observations 

to the separating hyperplane known as the margin, M. The support vector classifier is an 

extension of the maximum marginal classifier for inseparable cases. It tolerates a given 

level of misclassification,  𝜖𝑖  by specifying a budget, C that the margin can be violated by 

training observations, 𝑥𝑖𝑗  (Gareth et al., 2013). The support vector classifier tends to work 

well for both linear and non-linear inseparable cases. 

The optimization problem for non-linear cases becomes (Gareth et al., 2013); 

𝑚𝑎𝑥imize  𝑀 

Subject to  𝑦𝑖  (𝛽𝑜 +  ∑ 𝛽𝑗1𝑥𝑖𝑗
𝑝
𝑗=1 + ∑ 𝛽𝑗2𝑥𝑖𝑗

2𝑝
𝑗=1 ) ≥ 𝑀(1 − 𝜖𝑖)  

     ∑ 𝜖𝑖
𝑛
𝑖=1  ≤ 𝐶, 𝜖𝑖 ≥ 0, ∑ ∑ 𝛽𝑗𝑘

2  = 12
𝑘=1

𝑝
𝑗=1  
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Whereby 𝜖𝑖 is the misclassification error rate, M is the width of the margin, C is the tuning 

parameter (Cost) budget, 𝛽𝑖𝑗 is the coefficient for the training observation, 𝑥𝑖𝑗. 

 

5.3.6 K-Nearest Neighbors 

K-Nearest Neighbors is one of the simplest machine learning algorithms that can be used 

for both classification and regression problems. Like many other machine learning 

algorithms, it is a non-parametric technique as it doesn’t make any assumption about the 

distribution of the data. In many cases, the kNN will be outperformed by complex machine 

learning algorithms. However, it is useful to include it in the analysis to establish the 

baseline of the expected performance before embarking on using more complex 

algorithm which will utilize more resources. For a regression problem, the output of the 

kNN are the weighted values of k-nearest neighbors. The number of k-nearest neighbors 

for a given problem can be found using cross-validation approach. The number of 

neighbors that yield the output with the smallest root mean square error (RMSE) is usually 

selected as the optimal number of k-nearest neighbors. The function 𝑓(𝑥𝑜) is then 

estimated using the average of all the training responses in𝑁𝑜. Mathematically it can be 

presented as (Gareth et al., 2013) 

𝑓(𝑥𝑜) =
1

𝐾
∑ 𝑦𝑖

𝑥𝑖 ∈𝑁𝑜

 

Whereby,  𝑓(𝑥𝑜) is the average of K closest point. 

 

5.4 Model calibration 

In training the model, the sample was randomly divided into training and testing dataset. 

The training dataset had 80 percent of the total sample and the rest was used for testing 

the calibrated models. Each model was calibrated using k-fold cross-validation 

resampling strategy in which the dataset is divided into k different parts. The model is 

then fitted on the remaining k-1 training parts. The left-out part is used to test the model 

performance based on the calibrated parameters. The procedure is repeated k times, 

each time leaving out a different part of the dataset for testing the model performance.  
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The root mean square error (RMSE), which is the mean square difference between the 

observed and predicted outcome, is used as the criteria for selecting the best model. 

The description of variables used in the analysis is provided in Table 5.1 for 

continuous variables and Table 5.2 for categorical variables. The hourly total cyclist 

counts ranged from 0 to 112 cyclists with standard deviation of 11 cyclists per hour.  For 

Strava data, the deviation of count across sites was 2.2 cyclist per hour with the hourly 

count ranging from 0 to 20 cyclists. The average relative humidity had a standard 

deviation of 22.3% ranging from 10% to 99%.  As for the categorical variables, the majority 

of the segments in our sample had bike lanes followed by trails and shared lanes with 

markings. The segments passed mostly through the residential (28.8%) and recreational 

areas (28%) followed by institutional and commercial areas. 

 

Table 5.1: Descriptive summary of the continuous variable used in the analysis 

Variable N Mean SD Min Max 

Hourly Total Cyclist Counts 1520 7.9 11.2 0.0 112.0 

Hourly Strava Counts 1520 0.5 2.2 0.0 20.0 

Average Hourly Relative humidity (%) 1520 64.7 22.3 10.0 99.0 

% of males in  the population in the census block 1520 48.7 3.9 39.6 59.0 

% of white in  the census block population 1520 88.2 10.3 62.0 100.0 

% of bikers (workers) in the census block population 1520 0.3 0.9 0.0 3.9 
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Table 5.2: Descriptive summary of the discrete variables used in the analysis 

Variable Level Freq. Percent 

Bike facility 

Bike Lane 680 44.74 

None 149 9.8 

Shared Lane 266 17.5 

Trail 425 27.96 

Total 1520 100 

Hourly  
Adjustment 

Early AM hrs: 12am-5:59am 90 5.92 

AM hrs: 6am-9:59am 270 17.76 

Mid-Day hrs: 10am-2:59pm 509 33.49 

PM hrs: 3pm-7:59pm 487 32.04 

Evening hrs: 8pm-11:59pm 164 10.79 

Total 1520 100 

Landuse 

Commercial 289 19.01 

Institutional 368 24.21 

Recreational 425 27.96 

Residential 438 28.82 

Total 1520 100 

 

Figure 5.5 shows the cross-validation results for the different machine learning 

tuning parameters. The tuning parameters are specific for each machine learning model. 

The optimal tuning parameter was the one that minimizes the overall RMSE value 

averaged across all the cross-validation samples. Random forest also optimizes its 

calibration process by doing feature selection. The use of 8 randomly features yielded a 

minimum RMSE value. For kNN and support vector machine, 7-nearest neighbors and 

the cost factor of 1 yielded optimal results. The Artificial Neural Network with 5 hidden 

layers and a weight decay of 0.5 had the lowest RMSE values.  
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Figure 5.5: Model tuning parameters in the training dataset 

 

5.5 Influence of significant covariance in predicting bicycle count 

The Negative binomial model was used for making inferences on how each of the 

predictor variables impacts total bicycle counts, as shown in Table 5.3. Variables that 

were significant in the model includes hourly Strava counts,  relative humidity(%), hourly 

adjustment, bicycle facility, land use types, proportion of males in the census block 

population, proportion of white people in the census block population and proportion of 

bikers (workers) in the census block population. The exponentiated coefficients or 

incident rate ratios (IRR) are provided to facilitate the interpretation. An hourly adjustment 

factor was also added to the model to account for hourly variation of cyclist counts for a 



  

59 
 

given day. The adjustment factors were divided into five groups with Early AM hrs: 12am-

5:59am as a reference hourly adjustment factor. 

The Strava count which is one of the main predictor variables had a positive 

coefficient. By controlling for other confounding variables, one unit increase in hourly 

Strava cyclist counts in given segment increases the expected number of total hourly 

cyclist counts by a factor of 1.09 (9 percent).  

The effect of weather was also investigated using relative humidity as one of the 

predictor variables. The change in relative humidity on total cyclists’ counts was 

measured by controlling for trip purpose.  It was hypothesized that weather was likely 

have more impact on recreational trips which are optional compared to commute trips. 

Previous studies have also shown that the influence of weather condition on outdoor 

activities such as walking, running and biking is likely be mediated or confounded by trip 

purpose (Vanky et al., 2017). In our analysis, bicycle facility was used as a surrogate for 

trip purpose as we observed high correlation between trip purpose and facility type from 

the survey data. Majority of cyclists (89 percent) who reported to make a recreational trip 

were found using the trails while cyclists who were commuting were found mostly on other 

facilities (87 percent) .The interactive variable combining relative humidity and facility type 

(Trail vs No trail) was created during model calibration to discern the effect of relative 

humidity on total cyclist counts after controlling for trip type. A unit increase in percent of 

average hourly relative humidity decreases the total hourly cyclists count by 1.1 percent 

(IRR=0.989). The total hourly cyclist counts were further reduced by 1.4 percent 

(IRR=0.986) when considering the unit decrease in relative humidity on recreational trips 

i.e. trips on trails. 

The presence or absence of the dedicated bicycle facility in a given segment had 

a significant impact on the expected number of cyclists. The influence of each bicycle 

facility was measured by keeping segments which had no dedicated bicycle facility i.e., 

shoulder or sidewalk as the reference.  Trail was found to attract the highest number of 

cyclists compared to the rest of the facilities (IRR=5.011) followed by bike lane 

(IRR=1.672) and a shared lane marking markings/ sharrows (IRR=1.319). The IRR values 

that were obtained for each of the bicycle facility type were seemingly correct as cyclists 

are likely to be attracted more on bicycle facilities that offers exclusive space for riding. 
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Shared lane markings which had the lowest IRR value compared to trail and bike lanes 

is likely to be used by a segment of intermediate to expert cyclists who are confident to 

share the  road space with the vehicles.  

Segments located in residential areas were found to have more cyclists 

(IRR=1.286) compared to Institutional and commercial areas. The residential areas are 

the major cyclist trip production areas, thus accounting for most of cyclists that were 

counted.  

Census data at block level were also incorporated in the model. Variables that 

were tested in the model include age, gender, poverty level, education level, race and 

means of transportation to work. Only three variables from census data (gender, race and 

means of transportation to work) were found to significantly affect the total number of 

cyclists in a given hour as shown in Table 5.3. A unit increase in percent of males in a 

given census block increases the expected number of cyclists by 14.9 percent after 

controlling for other covariates in the model. Further, a unit increase in the percent of 

workers who were using bicycle to commute to work increases the expected number of 

cyclists in a given hour by 21.1 percent. The percentage of white population also had a 

significant impact (at 90% confidence level) with IRR value of 1.006.  
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Table 5.3: Model results for Negative Binomial regression model 

Bike counts IRR Std. Err. z P>z 

Strava Count 1.090 0.010 9.710 0.000 

Relative Humidity (%) 0.989 0.002 -7.040 0.000 

Relative Humidity (%) & Trails 0.986 0.002 -6.930 0.000 

Hourly adjustment 
(Ref: Early AM hrs: 12am-5:59am) 

    

  AM hrs: 6am-9:59am 22.617 5.204 13.550 0.000 

  Mid-Day hrs: 10am-2:59pm 21.635 4.935 13.480 0.000 

  Peak PM hrs: 3pm-7:59pm 22.086 5.056 13.520 0.000 

  Evening hrs: 8pm-11:59pm 13.117 3.065 11.020 0.000 

Bike Facility (Ref: 
Sidewalk/Shoulder) 

    

  Shared Lane 1.319 0.119 3.080 0.002 

  Bike Lane 1.672 0.143 6.020 0.000 

  Trail 5.011 0.740 10.910 0.000 

Landuse (Ref: Commercial)     

  Institutional 1.192 0.108 1.940 0.052 

  Residential 1.286 0.081 4.020 0.000 

Census data     

  % of males in the population 1.149 0.007 23.270 0.000 

  % of white in the population 1.006 0.004 1.690 0.092 

  % of bikers(workers) in the 
population 

1.211 0.036 6.430 0.000 

Constant 0.000 0.000 -15.400 0.000 

Alpha 0.418 0.024   
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5.6 Assessing the influence of Strava counts on model performance 

Sensitivity analysis was conducted to assess the influence of Strava cyclist counts in 

predicting the total cyclist counts in a given hour. The analysis involved two scenarios. 

The first scenario measured each models’ predictive performance using Strava cyclist 

count data as one of the predictor variables and the second scenario measured model 

performance without the Strava cyclist counts. The performance measures that were 

used were the RMSE value and the percentage of total cyclist count variance explained 

by predictor variables commonly referred as R-Squared value. The two performance 

measures complemented each other in explaining the model predictive performances. 

The model performance with and without Strava cyclist counts is shown in Figure 5.6. For 

each model, the RMSE and R-Squared values were estimated 100 times using 10 times 

10-fold cross-validation technique. This offered a way to make inferences based on 

distribution of the performance measures as shown in Figure 5.6. The addition of Strava 

count was found to increase the model performances consistently across all the models 

that were used in the training dataset. The increase in model performance was indicated 

by reduction in RMSE value and consequently the increase in R-Squared value. The 

paired one tail t-test was also conducted for the two scenarios as shown in Table 5.4. The 

null hypothesis that we wish to reject varied by the given performance measures. The null 

hypothesis for RMSE states that the average error value before adding Strava counts 

was less than RMSE value after adding Strava Counts. For R-Squared values, the null 

hypothesis stated that the average R-Squared values before the addition of Strava count 

is greater than R-Squared value after the addition of Strava counts. For all the models, 

the null hypotheses were rejected, concluding that the observed improvement of model 

performances was indeed significant.  
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Figure 5.6: Model predictive performance on the training dataset with and without 
Strava count 

 

Table 5.4: Paired t-test on predict on models’ predictive performance on the training 
dataset with and without Strava Count Feature 

Method 

RMSE 
 

R-Squared 

dRMSE= 

(RMSEstr-

RMSEnostr) 

p(dRMSE>=0) 
dR2 

(R2str-R2nostr) 
p(dR2<=0) 

NegBinomial -0.968 0.000 0.082 0.000 

RandomForest -0.867 0.000 
 

0.075 0.000 

KNNeighbor -0.727 0.000 
 

0.072 0.000 

RegressionTree -0.533 0.003 
 

0.055 0.000 

NeuralNetwork -0.787 0.001 
 

0.072 0.000 

SupportVM -0.659 0.002 
 

0.049 0.000 
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5.7 The best model for predicting cyclists counts 

The training RMSE value for each model were compared to select the best model that 

will be recommended for predicting hourly bicycle counts. Figure 5.7 shows the models’ 

performances based on the RMSE values obtained from the training dataset. The best 

model that yielded the lowest RMSE value was selected as our best model for predicting 

bicycle counts.  

 

 

Figure 5.7: Final model section for predicting the bicycle exposure 

 

The performance of the calibrated random forest model was tested using the 

remaining 30 percent of the data that was not used in training the model. The out-of-

sample prediction helps to discern the extent to which the model is generalizable. The 

model was able to explain about 71 percent of variation in hourly cyclists counts (R-

Squared=0.71) when tested on a different dataset. The final RF model was used to create 

an online tool available at https://trclc.shinyapps.io/BikeExposure/. This tool utilizes 

4 6 8 10 12
Train RMSE

SupportVM

NeuralNetwork

RegressionTree

KNNeighbor

RandomForest

NegBinomial

https://trclc.shinyapps.io/BikeExposure/
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crowdsourced data in addition to other data such as bicycle facility type, landuse, census 

data, relative humidity level, and time-of-the day to estimate hourly bicycle volume. 

Details are available in Appendix 8.6. 

 

5.8 Simulation study of Strava penetration rates 

The previous section assesses the significance of Strava count in predicting the total 

counts based on the current observed penetration rate of 7 percent. However, the number 

of Strava users keeps on growing each year. Definitely, the increase in Strava penetration 

rates will have an impact on model predictive performances in estimating total cyclist 

counts. Therefore, it is imperative to be able to envisage analytically how the model 

performance will change in the coming years as number of cyclists using Strava app keep 

on increasing. To achieve this, we conducted a simulation study by incrementing Strava 

counts from the base condition without distorting the observed hourly variation of Strava 

counts across our sites. Figure 5.8 shows the hourly distribution of different simulated 

Strava penetration rates aggregated for all the sites. The models were then calibrated by 

altering simulated Strava counts while keeping other predictor variables unchanged. 

 

Figure 5.8: Illustration of different hourly Strava penetration rates for all sites 
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A sensitivity analysis of the predictor variables was conducted for the five most 

important predictor variables which were Strava counts, relative humidity, the proportion 

of male population in a census block group, presence of a bike lane and presence of a 

trail. Figure 5.9 and Figure 5.10 show the variable importance plot of predictor variables 

across different model approaches. The importance of the variable i was based on how 

the model performances changes due to the presence of variable i as opposed to its 

absence. The change in predictive performances of each model, which for our case was 

the change in RMSE was scaled from 0 to 100 to facilitate the comparison across different 

models. At the base condition i.e., Strava penetration rate of 7 percent, Strava count was 

the most important predictor in 2 out of 6 modeling approaches.  A simulated Strava 

penetration rate of 10 percent consistently indicated Strava as the most important 

predictor for all the 7 model approaches. Apparently, a unit change in the percent of 

simulated Strava penetration rate has a very significant influence on the model’s 

performances.  

 

 
Figure 5.9: Variable importance plot for Strava penetration rate of 7 percent and 8 

percent 
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Figure 5.10: Variable importance plot for Strava penetration rate of 9 percent and 10 

percent 

 

Figure 5.11 shows the models’ predictive performances on the test dataset for 

different simulated Strava penetration rates. Figure 5.12 shows the model performances 

only for Random Forest which outperformed other models.  From Figure 5.12, the 

inclusion of Strava counts based on the current penetration rate increases the percent of 

cyclist count variance explained by the model from 65 percent to 71 percent. The graph 

shows a sharp increase of model performance from the base Strava penetration rate of 

7% to 10% and gentle increase in model performance up to a simulated Strava 

penetration rate of 40%. Thereafter, the increase in simulated Strava penetration rate do 

not offer appreciable improvement of model’s predictive performances.  
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Figure 5.11: Models performance at various Strava penetration rates on the test dataset 

 
Figure 5.12: Best model performance at various Strava Penetration rates on the test 

dataset 
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6 Conclusions and Recommendations 

 

As the technology continues to advance, crowdsourcing will continue to offer fast, 

plausible, convenient and cheaper platform of obtaining useful information from the 

crowd. In transportation, there is a growing interest from urban planners to use 

crowdsourced data of pedestrian and bicycle activities in network planning of non-

motorized facilities. Traditional means that are currently used to collect bicycle information 

lack spatial and temporal details of cyclists’ activities which are essential for effective 

planning of bicycle facilities at network level. This research investigated opportunities and 

limitations of integrating traditional cyclists count data with the crowdsourced cycling data. 

In this research, cyclists’ activities from the Strava Metro data was used as the source of 

the crowdsourced cyclists’ activities. Strava is one among commercial fitness apps that 

sells tracking data to public agencies to assist in making informed decisions and planning 

better facilities for pedestrians and bicyclists.  

Ground truth cyclist activities on selected segments were recorded using video 

data and later processed to obtain cyclist counts in each given hour. At each site, the 

video recordings were observed for a week to capture hourly variation within a day and 

daily variations within a week. Site characteristics at each of the selected segments were 

collected and joined spatially with other data sources.  

A field survey was conducted to identify the proportion of cyclists that were using 

fitness app to track their cycling activities. Further, the analysis investigated trip 

characteristics and demographics of cyclists who reported to use cycling apps in 

comparison to cyclists who reported not to use any of the fitness apps. The survey was 

conducted in the city of Ann Arbor and Grand Rapids. A total of 321 cyclists participated 

in the survey.  Interesting findings were obtained that have practical significance to 

planners and engineers who are currently using crowdsourced data or considering in the 

future to incorporate the crowdsourced data for assessment and planning of bicycle 

facilities. 

About 16 percent of cyclists that were surveyed reported to use Strava app while 18 

percent reported to use other fitness apps. The rest of the cyclists (66 percent) reported 

not using any fitness app. From the survey data, the reported average proportion of 
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cyclists who were using Strava app was 16 percent. This percentage was higher than the 

actual average proportion (7 percent) that was obtained after comparing the Strava cyclist 

counts and total ground truth counts from the selected segments. This might indicate the 

needs to adjust for penetration rates of Strava and other fitness apps users obtained from 

survey data to reflect the actual number of cyclists who are using fitness app(s) in the 

total cycling population.  

Furthermore, the analysis investigated if the cycling activities data coming from 

different fitness apps represent different cycling population demography. There has been 

a growing concern of using crowdsourcing data due to possible inequalities that may arise 

in distribution of resources and services. The resulting decisions may favor a segment of 

population that have digital access and therefore hinder opportunities for the remaining 

disadvantaged group (Griffin and Jiao, 2019). Based on the results of this study, the odds 

of using a Strava fitness app were likely to increase by 6.7 percent for cyclists’ age 25-34 

years and 52 percent for cyclists age 35-44 years. Conversely, young cyclists (less than 

25 years) and older cyclists (55 years and greater) had higher odds of utilizing other 

fitness apps. The dispersion of apps usage was also observed when analyzing app usage 

by gender. Male cyclists were more likely use Strava app (OR=2.204) while the female 

cyclists had higher odds (OR=1.813) of using other fitness app(s). Therefore, fusing 

cycling activities from different fitness apps can help to address the issue of digital 

inequality inherent in crowdsourcing platforms. However, there is a need to address the 

setbacks of data integration first before thinking about fusing dataset from different fitness 

apps. These setbacks include variation in data accuracy, data quality and possible 

redundancy in representation of certain segment of cycling population.  

Another important variable that was explored in our survey data is cyclist trip purpose. 

The cyclists were asked to report the purpose of their trips – either recreational or 

commuting. By controlling for cyclists age, gender and level of experience, it was found 

that cyclists who were making recreational trips had higher odds of using fitness tracking 

apps (Strava or/and any other fitness apps) compared to cyclists who were taking 

commute trips. Descriptive statistics of Strava cyclist activities from February 2018 to 

January 2019 was consistency with the survey results.  The commute trip constituted only 

6 percent of the total cyclist activities. Therefore, it is likely for the fusion of different 
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crowdsourced cycling data to adjust for inequality in demographic representation, but not 

trip characteristic. Other data types such as roadway, landuse and census data can be 

used to account for underrepresentation of commute trips when estimating the total 

number of cyclists’ trips.  

The estimation of bicycle exposure was one of the main components of this research. 

A predictive approach was developed to estimate the hourly cyclist volume using Strava 

data as one of the independent variables. Other variables that were included in the model 

include average hourly relative humidity (%),  census data such as proportion of males, 

white and bikers in a given census block where  the roadway segment is located, bike 

facility information, and land use types. Hourly adjustment factors were also applied in 

the model. Different probabilistic and machine learning models were tested using dataset, 

namely, the Negative Binomial model, Random Forest, Support Vector Machines, 

Artificial Neural Network and k-Nearest Neighbors. In terms of prediction, the Random 

Forest was found to have a better performance, explaining about 71% of the variations in 

total bicycle volume(R-Squared=0.71). The final product was a method to estimate hourly 

bicycle volume using the random forest model by inputting crowdsourced data in addition 

to other data such as bicycle facility type, landuse, census data, relative humidity level, 

and time-of-the day.  This method can be implemented through an online tool available 

at https://trclc.shinyapps.io/BikeExposure/.  

The contribution of Strava data in overall model predictive performance was assessed 

by conducting a sensitivity analysis of Strava data by comparing model performances 

with and without Strava cycling counts. For each model that was used in the training 

dataset, consistent results were obtained showing an improvement in model performance 

after adding Strava data. The significance of the improvement was tested by a paired t-

test of the models’ performance indicators (RMSE, R-Squared) before and after adding 

Strava data in the model estimation. Again, the improvement in model performance was 

significant at 95% confidence level for all the models that were tested in the data. In 

conclusion, Strava data showed a significant contribution to overall model predictive 

performance. 

The research team also explored what might be the change in model performance in 

the coming years. Number of Strava users is growing and its growth will have an impact 

https://trclc.shinyapps.io/BikeExposure/
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on future model predictive performances. The research team conducted a simulation 

study to assess the change in model performance based on different simulated Strava 

penetration rates. The base Strava penetration rate was 7% and the penetration rates 

were incrementally increased without distorting the observed variance of bicycle counts 

across the sites. The output of this analysis was a graph showing how the model 

performances (R-Squared) changes with simulated Strava penetration rate. The graph 

can be useful to planners and engineers who are currently or in the future considering 

using Strava data for estimating bicycle exposure. Example on how the graph can assist 

planner to make informed decisions is discussed in Chapter 5. 

In conclusion, this research demonstrated how crowdsourced cycling data can be 

integrated with the traditional counts to improve the estimation of bicycle exposure-an 

essential component in planning of non-motorized facilities at a given roadway network. 

With some additional data, the procedure developed in this research can be extended to 

estimate pedestrian exposure, which is also a fundamental component of urban planning.   
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8 APPENDICES  

8.1 Field data collection: City of Ann Arbor 

No Road Name Land use 
Bike 

facility 
Lat Long 

1 5th@Liberty Commercial Bike Lane 42.278684 -83.746129 

2 Murfin@Plymouth Institutional 
Shared 
Lane 

42.296415 -83.719707 

3 Huron@Dexter Residential None 42.281959 -83.765323 

4 Division@Packard Institutional Bike Lane 42.275278 -83.744247 

5 Platt@Packard Residential Bike Lane 42.243612 -83.700060 

6 Nixon@Green Residential Bike Lane 42.317163 -83.707602 

7 
Plymouth@Huron 

Pkwy 
Institutional Bike Lane 42.302561 -83.705764 

8 Miller@1st Residential 
Shared 
Lane 

42.283312 -83.750237 

9 State@Liberty Commercial 
Shared 
Lane 

42.279812 -83.740804 

10 State@Packard Commercial None 42.270327 -83.740595 

 

Physical addresses 

No Camera Location Physical address 

1 Light pole 325-301 S 5th Ave, Ann Arbor, MI 48104 
2 Light pole 1799-1691 Murfin Ave, Ann Arbor, MI 48105 
3 Electric pole 1499-1419 W Huron St, Ann Arbor, MI 48103 
4 Electric pole 494-580 S Division St, Ann Arbor, MI 48104 
5 Electric pole 3086-3166 Platt Rd, Ann Arbor, MI 48108 
6 Light pole 3029-3009 Nixon Rd, Ann Arbor, MI 48105 
7 Light pole 2777-2703 Plymouth Rd, Ann Arbor, MI 48105 
8 Electric pole 200-212 Miller Ave, Ann Arbor, MI 48104 
9 Light pole 233-201 S State St, Ann Arbor, MI 48104 
10 Electric pole 917-901 S State St, Ann Arbor, MI 48104 

 

Schedule 

 
No 
 

 
Name 
 

Week (Date) 

1 2 3 4 5 

(6/4/18-
6/10/18) 

(6/11/18-
6/17/18) 

(6/18/18-
6/24/18) 

(6/25/18-
7/1/18) 

(7/2/18-
7/8/18) 

1 5th@Liberty           

2 Murfin@Plymouth           

3 Huron@Dexter           

4 Division@Packard           
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5 Platt@Packard           

6 Nixon@Green           

7 Plymouth@Huron            

8 Miller@1st           

9 State@Liberty           

10 State@Packard           

Details of each site 

No 
Segment 

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

1 5th@Liberty Collector 
Bike Lane 

Commercial DTE 42.278684 

-

83.746129 
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Video camera location: Light pole 

No 
Segment  

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

2 
Murfin@Plymouth Local 

Shared 
Lane  

Marking 

Institutional UoM 42.296415 
-

83.719707 
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Video camera location: Light pole 

No 
Segment  

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

3 
Huron@Dexter Arterial None Residential DTE 42.281959 

-

83.765323 
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Video camera location: Electric pole 

No 
Segment  

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

4 
Division@Packard Arterial Bike Lane Institutional DTE 42.275278 

-

83.744247 
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Video camera location: Electric pole 

No 
Segment  

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 
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5 
Platt@Packard Collector Bike Lane Residential DTE 42.243612 

-

83.700060 

 

 

 

Video camera location: Electric pole 
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No 
Segment 

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

6 Nixon@Green Collector Bike Lane Residential City 42.317163 
-

83.707602 
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Video camera location: Light pole 

No 
Segment 

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

7 
Plymouth@Huron 

Pkwy 
Arterial Bike Lane Industrial DTE 42.302561 

-

83.705764 

 

 

 

Video camera location: Light pole 
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No 
Segment 

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

8 Miller@1st Arterial 
Shared 
Lane 

Marking 

Residential DTE 42.283312 
-

83.750237 

 

 

 

Video camera location: Electric pole 
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No 
Segment 

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

9 State@Liberty Arterial 
Shared 
Lane 

Marking 

Commercial City 42.279812 
-

83.740804 

 

 

 

Video camera location: Light pole 
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No 
Segment 

Name 
Road 
type 

Bike 
facility 

Land use Owner Lat Long 

10 State@Packard Arterial None Commercial DTE 42.270327 
-

83.740595 

 

 

 

Video camera location: Electric pole 
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8.2 Field data collection: City of Grand Rapids 

List of sites 

No. Road Name Land use Facility Lat Long 

1 Cherry St SE Commercial Bike lane 42.9594 -85.6586 

2 Grandville Ave SW Commercial Shared lane 42.9603 -85.6735 

3 Lake Dr SE Residential None 42.9544 -85.6299 

4 Monroe Ave NE Residential Bike lane 43.0103 -85.6665 

5 N Park St NE Institutional Bike lane 43.0224 -85.6602 

6 Walker Ave NW Institutional Bike lane 42.9832 -85.7021 

7 White Pine Trail Recreational Trail 43.0026 -85.6708 

8 Oxford Street Trail Recreational Trail 42.9559 -85.6861 

8 Oxford Street Trail Recreational Trail 42.9531 -85.6896 

9 Kent Trail Recreational Trail 42.9506 -85.7095 

 

Physical addresses 

Site. 
No 

Camera 
Location Address 

1 Light pole 419-401 Cherry St SE, Grand Rapids, MI 49503 

2 
Light pole 

135-165 Grandville Ave SW, Grand Rapids, MI 
49503 

3 
Electric pole 

1572-1634 Lake Dr. SE, East Grand Rapids, MI 
49506 

4 
Light pole 

2600-2698 Monroe Ave NE, Grand Rapids, MI 
49505 

5 Light pole 422-446 N Park St NE, Grand Rapids, MI 49525 

6 
Electric pole 

1327-1399 Walker Ave NW, Grand Rapids, MI 
49504 

7 None(Tubes) White Pine Trail, Grand Rapids, MI 49505 

8 None(Tubes) SWAN, Grand Rapids, MI 49504 

9 None (Tubes) Kent Trails, Grand Rapids, MI 49534 

 

Schedule 

No. Road Name 
Week 1 Week 2 Week 3 

7/16/18-7/22/18 7/23/18-7/29/18 7/30/18-8/5/18 

1 Cherry St SE       

2 Grandville Ave SW       

3 Lake Dr SE       

4 Monroe Ave NE       

5 N Park St NE       

6 Walker Ave NW       

7 White Pine Trail       

8 Oxford Street Trail       
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9 Kent Trail       

 

Details of each site 
 

No. Road Name Land use Facility Lat Long 

1 Cherry St SE Commercial Bike lane 42.9594 -85.6586 
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Video camera location: Light pole 

No. Road Name Land use Facility Lat Long 

2 Grandville Ave SW Commercial Shared lane 42.9603 -85.6735 
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Video camera location: Light pole 

 

No. Road Name Land use Facility Lat Long 

3 Lake Dr SE Residential None 42.9544 -85.6299 
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Video camera location: Electric pole 

 

No. Road Name Land use Facility Lat Long 

4 Monroe Ave NE Residential Bike lane 43.0103 
-

85.6665 
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Video camera location: Light pole 

No. Road Name Land use Facility Lat Long 

5 N Park St NE Institutional Bike lane 43.0224 -85.6602 

 



  

95 
 

 
 

 
Video camera location: Light pole 

 

 

No. Road Name Land use Facility Lat Long 

6 Walker Ave NW Institutional Bike lane 42.9832 -85.7021 
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Video camera location: Light pole 

 

 

 

 

 

No. Road Name Land use Facility Lat Long 

7 White Pine Trail Recreational Trail 43.0026 -85.6708 
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Location: Bike pneumatic tube counters across the trail 

 

 

 

 

 

 

 

 

 

 

 

No. Road Name Land use Facility Lat Long 

8 Oxford Street Trail Recreational Trail 42.9559 -85.6861 
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Location: Bike pneumatic tube counters across the trail 

 

 

 

 

 

 

 

 

 

 

No. Road Name Land use Facility Lat Long 

9 Kent Trail Recreational Trail 42.9506 -85.7095 
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Location: Bike pneumatic tube counters across the trai
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8.3 Hourly Bicycle Counts: City of Ann Arbor 
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Mon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sat 0 0 1 6 2 3 8 3 2 4 2 4 4 2 4 0 0 0 45 

Sun 0 1 0 1 3 2 2 6 5 1 4 7 6 3 0 0 0 0 41 
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Fri 0 1 0 0 0 1 2 3 1 1 1 0 0 0 0 0 0 0 10 

Sat 0 0 0 0 0 1 2 2 5 4 1 2 1 2 1 5 0 0 26 

Sun 0 1 0 1 4 1 6 3 0 2 1 0 0 1 0 0 0 0 20 
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8.4 Hourly Bicycle Counts: City Grand Rapids 
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8.5 Survey of cyclists at bicycle parking areas (racks and hoops) 

 

Survey location  

 

Survey duration: (1-2minutes) 

 

Goal of the survey 

This survey is conducted by Western Michigan university to gather the following information 

(1) Demographics and cycling behavior of the cyclists 

(2) Characteristics of the trip(s) made by the cyclists 

(3) The proportion of cyclists using the fitness and health apps to track their cycling activities 

 

A. Demographic and cycling behavior 

1. Age 

 <16 

 16-24 

 25-34 

 35-44 

 45-54 

 55-64 

 >65 

2. Sex 

 Male  

 Female 

 Prefer not to say 

3. How do you describe your biking skills level? 

 Beginner 

 Intermediate 

 Expert 

4. Do you use STRAVA app to keep track of your cycling activities? 

 Yes 

 No 

5. Do you use any other fitness app(s) to keep track of your cycling activities? 

 Yes 

 No 

6. How often do you bike? 

 Always (Daily) 

 Often (Few times a week) 

 Sometimes (Several times a month) 

 Seldom (Few times a year) 

 

B. Characteristic of the trip (s) a cyclist made/about to make 

7. What is/was the purpose of your trip? 
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 Commute to/from work or school 

 Recreational 

 An errand 

 

8. What are the bicycle facilities available along the route for your trip? 

 Bike lane 

 Shared lane 

 Trail 

 Paved shoulder 

 Sidewalk 

 

9. How will you rate the quality of bicycle facility available for your trip? 

Poor Fair Good Excellent 

    

 

10. When traveling a segment with a bicycle facility such as bike lane, shared lane, or paved 

shoulder, would you prefer riding on a sidewalk if available?  

 Never 

 Only if the roadway is busy or it is high speed road 

 Always 

 No preference 
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8.6 Tool for estimating hourly bicycle volume 

 

Location: https://trclc.shinyapps.io/BikeExposure/ 

 

This interactive tool estimates hourly bicycle volume at a given roadway segment using Random 

Forest(RF) model. The user needs to download a template file and fill in the required 

information. Once the data is uploaded, the user can view results by clicking the “Table” or 

“Visualization” tab. The estimates can then be downloaded.  

 

The data needed are as follows: 

 

VARIABLE  DESCRIPTION  INSTRUCTIONS  

site  
Site identification 
number  

Fill-in the site identification number. 
It should be an integer  

strava  Hourly Strava Count  
Fill-in the Strava counts for your 
hour of interest. It should be an 
integer  

humidy  
Average Hourly 
Relative humidity 
(%)  

Fill-in the humidity for your hour of 
interest. It should range from 0 to 
100  

hour_adjAM.hrs..6am.9.59am  
Hourly Adjustment 
Factor: 6am-9: 59am  

Put 1 if your hour of interest falls 
within this time of the day otherwise 
0  

hour_adjEvening.hrs..8pm.11.59pm  
Hourly Adjustment 
Factor: 8pm-
11:59pm  

Put 1 if your hour of interest falls 
within this time of the day otherwise 
0  

hour_adjMid.Day.hrs..10am.2.59pm  
Hourly Adjustment 
Factor: 10am-
2:59pm  

Put 1 if your hour of interest falls 
within this time of the day otherwise 
0  

hour_adjPeak.PM.hrs..3pm.7.59pm  
Hourly Adjustment 
Factor: 3:00pm-7:59  

Put 1 if your hour of interest falls 
within this time of the day otherwise 
0  

bikefacilityBike.Lane  
Bike Facility: Bike 
Lane  

Put 1 if the road segment has bike 
lane otherwise 0  

bikefacilityShared.Lane  
Bike Facility: Shared 
Lane  

Put 1 if the road segment has 
shared lane otherwise 0  

bikefacilityTrail  Bike Facility: Trail  
Put 1 if it is a trail facility otherwise 
0  

landuseIndustrial  Landuse: Industrial  
Put 1 if the road segment passes 
mainly through the industrial area 
otherwise 0  

landuseInstitutional  
Landuse: 
Institutional  

Put 1 if the road segment passes 
mainly through the 

https://trclc.shinyapps.io/BikeExposure/
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VARIABLE  DESCRIPTION  INSTRUCTIONS  

institutional(campus) area 
otherwise 0  

landuseResidential  Landuse: Residential  
Put 1 if the road segment passes 
mainly through the residential area 
otherwise 0  

pro.male  
% of males in the 
population in the 
census block  

Fill-in the percentage of males in a 
population at a given census block. 
It should range from 0 to 100  

pro.white  
% of white in the 
census block 
population  

Fill-in the percentage of white race 
in a population at a given census 
block. It should range from 0 to 100  

pro.bike  
% of bikers (workers) 
in the census block 
population  

Fill-in the percent of bikers 
commuting to work in a population 
at a given census block. It should 
range from 0 to 100  

 


