student in the electrical and computer engineering department working on a project

Electrical and Computer Engineering

  • Fall 2023

    Presentations will take place at Floyd Hall in room D-204.

    A Novel Haptic System with Advanced Force Sensing Capabilities for Soft-Robotic Applications

    9 to 9:25 a.m.

    Team Members:
    Hakan Dogdu
    Matthew Haley
    Sergei Akhmatdinov

    Sponsor:
    Dr. Simin Masihi, Western Michigan University

    Faculty Advisor:
    Dr. Simin Masihi

    Robots have been assisting humans for many years, especially in environments where human interventions are not allowed. This work aims to address the gaps in providing dexterous manipulations in current telerobotic systems, where efforts have been more focused on improving commercial haptic feedback devices. Multilayered pressure sensors with polydimethylsiloxane cones and porous structures were designed for applications where teleoperation involves interactions with a broad range of applied pressures. With a haptic system designed using a remotely controlled robotic hand and a piezoelectric actuator, our system provides expanded capabilities in fields such as robotic surgery and space exploration.

    Smart White Cane

    9:30 to 9:55 a.m.

    Team Members:
    Haonan Wen
    Kenny Bainbridge
    Matt Van Sickle

    Sponsor:
    Dr. Pnina Ari-Gur, Western Michigan University

    Faculty Advisors:
    Dr. Pnina Ari-Gur
    Dr. Robert Makin
    Dr. Simin Masihi

    The white cane is a tool used by those who have low vision to manually scan for nearby obstacles. To make this process automatic, separate detection and alert modules have been designed and built to detect nearby obstacles. Camera and distance sensor data feed a machine-learning model to infer the presence of an obstacle. The obstacle classification is sent over Bluetooth to trigger vibrations on the back of the user’s hand. This Smart White Cane allows the obstacle scanning process (for those who have low vision) to be more automatic, ensuring greater independence and confidence in their daily lives.

    Analog Sensor to CAN Bus Communication Device

    10 to 10:25 a.m.

    Team Members:
    Corey Steinhauser
    Elliott Smith
    Jillian Bright

    Sponsor:
    Michael Roussin, B.S.E.’02, M.S.’17, Getman Corporation

    Faculty Advisor:
    Dr. Janos L Grantner

    Dedicated systems that transmit analog data around a machine can add cost to the machine’s construction, so a more cost-effective device is needed to move these signals. By making use of the local controller area network (CAN) bus on the machine, a microcontroller was programmed to convert the analog information to digital before packaging the information in the J1939 format for heavy-duty vehicles. That packaged information is then broadcasted every 100ms onto the CAN bus. The microcontroller and other contributing components are mounted to a prototype PCB that transmits the information reliably at a cheaper price than the current system.

    Position Sensor System for FOC of In-Wheel Motors

    10:30 to 10:55 a.m.

    Team Members:
    Blake Crowton
    Dan Stephan
    John Skuratowicz

    Sponsor:
    Dr. Sandun Kuruppu, Western Michigan University

    Faculty Advisor:
    Dr. Sandun Kuruppu

    Electric vehicles require compact and efficient motors to compete with fossil-fueled alternatives. In-wheel motors are an attractive alternative to conventional electric motors due to their compact form factor. The nature of these motors makes it challenging to implement sensor-based field-oriented control. The goal is to develop a position-sensor system compatible with in-wheel motors and adapt a field-oriented control program to utilize the sensor inputs. This enables the in-wheel motor to operate at a higher efficiency than what is currently available on the market.

    Superconductor Critical Temperature Measurement System

    11 to 11:25 a.m.

    Team Members:
    Al Muhanad Al Hadrami
    Josue Rubuye Mugisho
    Kaushik Mojumder

    Sponsor:
    Dr. Robert Makin, Western Michigan University

    Faculty Advisor:
    Dr. Damon Miller

    Critical temperature is an essential parameter in superconductor production. An automated system to accurately and efficiently measure the critical temperature of superconductive samples grown in a lab via molecular beam epitaxy was developed. A sample holder and an electronic printed circuit board were constructed to obtain resistivity measurements of a superconductor sample. The system quickly provides users with accurate electrical data for thin film samples by establishing the relationship between temperature and electrical thin film material resistivity.

    Autonomous Precision Landing System for UAVs

    11:30 to 11:55 a.m.

    Team Members:
    Dante Bailey
    Ramses Larabel
    Shane Courter

    Sponsor:
    Dr. Tarun Gupta, Western Michigan University

    Faculty Advisor:
    Dr. Dean Johnson

    An autonomous precision landing system for UAVs (APLSU) was developed to assist in the task of accurate landings. This would be useful in applications with package delivery, where battery efficiency and timing must be optimized. The APLSU will include a GPS-controlled flight path of the drone, and on the return trip, the drone will autonomously seek to find and land on the landing station in the most optimized route. Autonomous precision landing will play a crucial role in the future when drones are fully self-sufficient. The APLSU includes a working prototype and a landing station that can store drones.

  • Spring 2023

    Presentations will be held at Floyd Hall in D-204.

     

    Rogowski Coil Monitor

    9 to 9:25 a.m.

    Team members

    • Benjamin Gernaat
    • Kevin Heinzman
    • Noah Khanfar

    Sponsor

    • Tengam Engineering, Inc.

    Faculty advisor

    • Damon Miller, Ph.D.

    High-frequency, large-amplitude current pulses can be sensed by an induced voltage across a Rogowski coil. The developed rechargeable device uses a Rogowski coil to measure up to 10kA current pulses at a maximum of 100kHz, with 1% accuracy. The design features a printed circuit board (PCB) for ease of construction. The PCB includes filters, amplifiers, an integrator, and battery charging integrated circuitry. LED indicators show the on/off status and battery state of the device.


    Robotic Exoskeleton for Weightlifting Assistance

    9:30 to 9:55 a.m.

    Team members

    • Kiran Bholiyan
    • Donovan Colo
    • Susmita Dey

    Sponsor

    • Tarun Gupta, Ph.D.

    Faculty advisor

    • Dean Johnson, Ph.D.
    • Tarun Gupta, Ph.D.

    A robotic exoskeleton that will assist the user in a ground-to-waist level lifting movement has been designed, built, and tested. It meets the need to assist industrial workers who must lift loads from the ground to the hip level, thereby reducing the physical strain on the body and preventing injuries and Work-related Musculoskeletal Disorders (WMSD). It is powered by a microcontroller that works in conjunction with the essential hardware – motors and sensors. The sensors detect the movement and the force exerted by the user, the microcontroller processes this data, and the motors provide the necessary assistance.


    Fast Moisture and VOCS Test

    10 to 10:25 a.m.

    Team members

    • Andrew Higgins
    • Dagmawit Lamango
    • Zachary Tay

    Sponsor

    • Sam Ramrattan, Ph.D., Western Michigan University

    Faculty advisor

    • Robert Makin, Ph.D.

    Moisture Content and Volatile Organic Compounds (VOCs) tests are critical tests used to determine the quality and feasibility of casting sand. An existing Moisture Content Testing Machine has been redesigned with an infrared heater to reduce the testing time from ten minutes to five minutes. Time and accuracy are key in the metal casting industry. The completed machine would aid in quality control aspects of casting sand to produce better metal casted materials.


    Design and Control of a DC Nanogrid

    10:30 to 10:55 a.m.

    Team members

    • Ali Ahmed
    • Ahmed Almuraikhy
    • Daniel Nyambane

    Sponsor

    • Pablo Gomez, Ph.D., Western Michigan University

    Faculty advisor

    • Pablo Gomez, Ph.D.

    This project involves the design and implementation of a table-sized DC microgrid, or nanogrid. It includes a photovoltaic panel, an energy storage system, different types of loads, and the ability for grid connection emulated by rectified wall power. An Arduino microcontroller is used to monitor and control the operational modes of the nanogrid, switching between islanded mode and grid-tied mode, based on the generation, storage, and load conditions. This nanogrid design serves to showcase the operation of a microgrid at a lower scale for educational, demonstration and research purposes.


    WMU Soccer Field Lighting, Power Distribution and Control System

    11 to 11:25 a.m.

    Team members

    • Princeton Johnson
    • Rachel LaHaie
    • Jordan Walker

    Sponsors

    • ThermalTech Engineering
    • Gentex Corporation

    Faculty advisor

    • Damon Miller, Ph.D.

    The WMU athletics department has recently shown interest in updating the soccer complex. The primary update is to add stadium lighting for night games including regional tournaments. To reduce construction costs, engineering drawings for light installation and power distribution were prepared based on a photometric study and a small-scale field model. These can be used to bid the project to vendors. The scale model stadium lamps are controlled by an Arduino with Bluetooth and light sensors.


    MPPT Solar Charge Controller

    11:30 to 11:55 a.m.

    Team members

    • Brice Leuenberger
    • Tyler Starr
    • Luke Thomas

    Sponsor

    • Pablo Gomez, Ph.D., Western Michigan University

    Faculty advisor

    • Pablo Gomez, Ph.D.

    Maximum Power Point Tracking (MPPT) is a process that tracks the maximum output power of a solar panel (PV) to optimize usable solar energy efficiency. The MPPT solar charge controller sits between a 12V 20W solar panel and a 12V battery (load). The solar charge controller is operated by an Arduino microcontroller utilizing MPPT algorithms to measure and track PV output voltage and current levels. These levels supply the input to a DC-DC converter, which maintains desired output voltage or current levels for the load. Different MPPT algorithms can be selected within the charge controller to test changes in MPPT efficiency.


    Helmholtz Cage Construction for Low-Earth Orbit Mag-Field Simulations

    1 to 1:25 p.m.

    Team members

    • Eti Jean-Cedric Phinee Myles Gnamien
    • Colin Goldschmidt
    • Adebola Oke

    Sponsor

    • Western Aerospace Launch Initiative

    Faculty advisor

    Pablo Gomez, Ph.D.

    The WALI mission as part of the University Nanosatellite Program (UNP) is to launch a nanosatellite into Low-Earth Orbit for comparison of the performance of an electrospray thruster in ground and space operations. A Helmholtz Cage was designed using COMSOL, a Multiphysics simulation software, and constructed to generate and simulate three-dimensional magnetic field conditions at about 400km altititude. An interface which unifies the system via a microcontroller is also designed to provide WALI engineers a user-friendly control mechanism for the cage. Furthermore, the cage can now be employed for any testing that requires a uniform magnetic field below 2 Gauss.


    Modernization of Air Hockey Table

    1:30 to 1:55 p.m.

    Team members

    • Ethan Burnside
    • Marwan Issa Salim Al Kharusi
    • Landen Wallace
    • Zach Westmaas

    Sponsor

    • Robert Makin, Ph.D., Western Michigan University

    Faculty advisor

    • Robert Makin, Ph.D.

    Air hockey tables have stayed the same since their invention 60 years ago. This modernized air hockey table uses a Raspberry Pi to control embedded LEDs beneath the playing surface for lighting; airflow control valves to lower airflow to certain zones of the table; and control of fans to create zones of varied airflow, enabling several game modes. The Raspberry Pi also has two inputs into the system: a touch-sensitive display for both players to decide game modes and sensors in the goals to determine if a goal was scored. The table now includes multiple new game modes.

  • Fall 2022

    Electrical and Computer Engineering
    Session Chair – Ralph Tanner, Ph.D.
    Room D-204/205 

    High voltage power processing unit design

    Student team: Omar Al Hashimi and Riya Subedi
    Sponsor: Western Aerospace Launch Initiative
    Faculty Advisor: Pablo Gomez, Ph.D.
    9 a.m. – 9:25 a.m. 

    There are many Power Processing units (PPU) available in the market, but it is difficult to obtain a commercial PPU that is optimized for an electrospray propulsion system. A low-cost high voltage PPU was designed and built to convert 5V digital input obtained from solar cells to 2000 V DC output. The PPU includes a Digital to Analog Converter (DAC), voltage follower, DEC-DC Boost converter, H-bridge, step-up transformer, and Crockcroft Walton Bridge. An Arduino was used as a microprocessor for the control system. The customized PPU will be used to generate the required voltage and current to power the electrospray thruster of the CubeSat.

    Matrix multiplication acceleration for machine learning applications

    Student team: Tawfiq Abuaita, Mohammad Islam and Danish Murshid
    Sponsor: Computer Architecture and System Research Lab
    Faculty Advisor: Lina Sawalha, Ph.D.
    9:30 a.m. – 9:55 a.m. 

    Sparse Matrix Multiplication (SPMM) and General Matrix Multiplication (GEMM) are commonly used as part of artificial neural network and deep learning applications. These operations are compute and memory intensive, especially with the emerging big data machine learning applications. This project aims to accelerate matrix multiplication by designing new specialized operations. These specialized operations set are added to the RISCV processor instruction set, and they will be designed and simulated using GEM5 computer architecture simulator. Finally, these operations will be designed using Verilog hardware description language and tested using Xilinx simulations on an actual Field-Programmable Gate Array (FPGA) board.

    Interface-stacker renovation

    Student team: Owen R. Avrill, and Zia Mohammed and MD Marsad Zoardar
    Sponsor: Graphic Packaging International
    Faculty Advisor: Dean Johnson, Ph.D.
    10 a.m. – 10:25 a.m.

    A new Controller to an Interface Shaker Machine (ISM) has been designed which will help reduce the complexity of the ISM while achieving a production capacity of 50,000 cartons per hour. Modern Allen-Bradley CompactLogix PLC was used with the latest Studio-5000 Software which reduced the complexity of the design and the requirements were met within the given budget of $10,000. Two Servo Motors were used between the collator machine and the gluer machine for precision speed control. A vibrator was used to make even sized stacks. Also, the safety feature of the system was enhanced all thanks to the Pilz Safety PLC.

    Axial flux motor

    Student team: Matthew Maletta, Blaik Ronders and Nicholas Warner
    Sponsor: Richard Meyer, Ph.D.
    Faculty Advisor: Pablo Gomez, Ph.D.
    10:30 a.m. – 10:55 a.m.

    The design of a scaled-down axial flux motor for the hybridization of a class 8 heavy-duty truck. This motor will be used for demonstration and research purposes by our sponsor Dr. Meyer. It will also become part of the ME 5950 electric vehicles lab that will perform tests on the scaled-down system on a variety of scaled drive systems. Our design will act as a physical engineering model for Dr. Meyer’s current project to make a hybrid semi-truck to help cut down carbon emissions.

    Design of seebeck coefficient measurement system

    Student team: Marwan Al Kharusi, Mohamed Al Riyami and Amos Lian
    Sponsors: Robert Makin, Ph.D., and Steve Durbin, Ph.D.
    Faculty Advisors: Robert Makin, Ph.D. ,and Steve Durbin, Ph.D.
    11 a.m. – 11:25 a.m.

    An all-in-one custom setup that allows to measure the in-plane Seebeck coefficients and electrical conductivities of anisotropic thin film samples close to room temperature. Both pairs, , can be measured using four contacts on the same sample, reducing measurement time, and minimizing potential sources of error due to aggregating data from several distinct samples.

    Foundry sand loss on ignition measurement system

    Student team: Andrew Burton, Chris Mennell and Imane Wydick
    Sponsor: Sam Ramrattan, Ph.D.
    Faculty Advisor: Damon Miller, Ph.D.
    11:30 a.m. – 11:55 a.m. 

    Moisture content, volatile organic content, and overall weight change of foundry sand after heating are critical factors in metal casting. These characteristics are measured by weighing sand samples during simultaneous heating with three heaters. The developed automated system requires a ten-minute test time as opposed to four hours using current methods. Weight measurements are logged by a computer for analysis using LabVIEW™.

  • Spring 2022

    Wireless Smart Plant Monitor

    Shoe Insole for Gait and Mobility Analysis (SIGMA)

    Analyzing gait, or the manner a person walks, is widely used in the sports medicine industry when identifying athletes' unique movements, determining gait patterns, or diagnosing abnormalities. SIGMA was aimed to create a more accessible device that allows users to check their gait from their own screens at a lower-than-market cost with more accuracy and durability. This was achieved using a microcontroller attached to athletic footwear that uses Bluetooth communication to connect to the user’s phone. The final insole prototype provides a network of sensors including pressure sensors, gyroscopes, and accelerometers incorporated into an insole.

    Team Members:

    Schuyler-James Jones

    Paul Marsh

    Nuha Terkan

    Sponsor:

    Center for Advanced Smart Sensors and Structures (CASSS), Department of Electrical and Computer Engineering,

    WMU

    Faculty Advisor:

    Dr. Massood Atashbar

    Two Phase Inverter Design

    Nanogyro has designed a pair of coils that are 90° out of phase and the coils are to be driven by two AC voltages that are also 90° out of phase. Nanogryo has been using a signal generator to produce the two AC voltages, but as the signal’s frequency changes, the output impedance also changes, which is a problem. A microcontroller will be used to produce sine waves at the appropriate frequencies and constant phase output. The digital processing will remove any analog factors affecting the phase of the signals. This project will use a DC voltage to generate the two AC voltages (90° out of phase) with constant output impedances as the frequency changes.

    Team members

    • Jawad Alowa
    • Breanna Alvin
    • Tim Nowak

    Sponsor

    • Nanogyro Technical Lead, Department of Electrical and Computer Engineering, WMU

    Faculty advisor

    • Dr. Johnson Asumadu

    CAB Micro

    The field of science, technology, engineering and mathematics (STEM) education is continuously expanding and in further need of educational devices. A custom-made Arduino microcontroller circuit board with on-board sensors and motor controllers was designed using Autodesk EAGLE, a circuit design software. The microcontroller allows for a multipurpose and multifunctional programmable device for education in circuitry and computer programming. The device supports various methods of data collection and transmission for fostering and enhancing a student’s engineering capabilities. The completed device provides an educational modality that will support the education of future engineers.

    Team members

    • Sebastian Balde
    • Jawid Nawazish
    • Juan Rodriguez

    Sponsor

    • Frank Norton, uniteSTEM

    Faculty advisor

    • Dr. Robert Makin

    White Cane Module

    The White Cane Module is a wearable device for low vision individuals, designed to aid in obstacle detection as an addition to the White Cane Vest. The module begins by collecting optical data from an infrared sensor that outputs voltage signals based on distance from an obstacle. This signal is processed by a microcontroller which uses a Bluetooth transmitter to feed a series of vibrating electric motors. These motors use the signal to alert the user of an impending fall. Many individuals in the world lack access to affordable ophthalmology treatments, with future developments this device will be affordable and accessible by all.

    Team members

    • Gabe Gischia 
    • Tabitha Hudson 
    • Alwaleed Khalid 
    • Emmanuel Oladipupo

    Faculty advisors

    • Dr. Pnina Ari-Gur
    • Dr. Robert Makin

    DIY Electrometer

    An electrometer is a device used to stimulate a neuron with an electrical current and record its response. This is a critical piece of equipment in an electrophysiology lab. Commercial electrometers can be quite expensive. The high cost can be a barrier to undergraduate-level neurobiological stimulation experimentation. A DIY electrometer kit was designed and validated, building on previous projects. The cost of the DIY electrometer kit is about $400.00.

    Team members

    • Shelby Bessler
    • Jadon Clugston
    • William Murphy

    Faculty advisor

    • Dr. Damon Miller

    DIY Electrometer Digital Interface

    Studying the electrical properties of biological neurons requires precise control of injected currents and the ability to monitor the neuron membrane voltage response. An analog electrometer has been developed by other undergraduate and graduate students. This project developed an add-on digital interface to enable application of custom neuron stimulation currents.  The device can capture the voltage response and current waveform in real-time for later analysis.  The system is affordable and open-source, using readily available commercial parts and builds on work by previous design group.

    Team members

    • Quang Nam Do
    • Bharat Goel
    • Dawson Hamill

    Sponsor

    • WMU Neurobiology Engineering Laboratory

    Faculty advisor

    • Dr. Damon Miller