Superabsorbent Polymers for Energy-Efficient Thermal Comfort Control of Buildings
Join us on WMU's Parkview Campus for a presentation with Dr. Shuang (Cynthia) Cui, assistant professor mechanical engineering at the University of Texas at Dallas.
- Wednesday, October 4, at 11 a.m.
- Parkview Room, D-132 Floyd Hall
- Beverages and cookies served
- Open to the public
The buildings sector accounts for more than 40 percent of all U.S. primary energy consumption and associated greenhouse gas (GHG) emissions. In 2018, approximately 7.59 quads of energy (equivalent to ~$20 billion) was lost through unnecessary large area environmental conditioning and poor thermal insulation of building components, making it imperative to reduce energy consumption in buildings through the development of next-generation, energy-efficient building technologies and practices. Superabsorbent polymers, or hydrogels, are materials that contain more than ~ 90 wt% water and are commonly used in contact lenses, wound dressing, tissue engineering, and drug delivery. Recently, hydrogels have been proposed for temperature and humidity control of buildings due to their superabsorbent and environmentally friendly capability. The goal of this Dr. Shuang (Cynthia) Cui ‘s study was to develop hydrogels-based materials for energy-efficient thermal comfort control of buildings. Multiple approaches at the forefront of hydrogels for next-generation building technologies have been studied including the development of artificial ‘skins’ for building cooling, thermo-responsive adsorbents for moisture control, and composite phase change materials (PCMs) for thermal energy storage.
In this presentation, Cui will discuss the research and implications for artificial skins for the future building sector.
About Dr. Shuang (Cynthia) Cui
Dr. Shuang (Cynthia) Cui is an assistant professor in the Department of Mechanical Engineering at the University of Texas at Dallas. She is also jointly appointed in the Buildings and Thermal Sciences Center at National Renewable Energy Laboratory (NREL). Her research focuses on both the fundamental study of nanoscale heat transfer and energy conversion and advanced materials development, spanning intelligent soft materials and devices for moisture control and composite phase change materials for thermal energy storage.
Cui was a selected participant of the International School for Materials for Energy and Sustainability VIII at Caltech, 2019 U.S. C3E Women in Clean Energy Symposium at Texas A&M University and The Rising Stars Women in Engineering Workshop at Seoul National University (Korea). She is also highlighted by the Department of Energy’s “Women @ Energy: STEM Rising.” Cui collaborates with scientists and engineers from diverse fields, including mechanical, electrical, chemical and civil engineers, material scientists, and chemists to pursue her research projects. Her research has been supported by multiple federal agencies (DOE, ARPA-E, NSF, and NREL) and private sector partners (Wells-Fargo) leading to 25 peer-reviewed journal articles and six patents.
Cui received her Ph.D. in mechanical engineering at the University of California, San Diego. She received M.S. and B.S. degrees in thermal engineering at Wuhan University, China. Her previous research focuses on thermal metrology development for nanomaterials and intelligent soft materials and devices for thermal regulation, water harvesting and desalination.